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ABSTRACT 
Significant research effort has been dedicated for decades to improve the mechanical 

properties of aerospace polymer-based composite materials. Lightweight epoxy-based 
composite materials have increasingly replaced the comparatively heavy and expensive 
metal alloys used in aeronautical and aerospace structural components. In particular, 
carbon fibers (CF)/graphene nanoplatelets (GNP)/epoxy hybrid composites can be used for 
this purpose owing to their high specific stiffness and strength. Therefore, this work has 
been completed to design, predict, and optimize the effective mechanical properties of 
CF/GNP/epoxy composite materials at different length scales using a multiscale modeling 
approach. The work-flow of modeling involves a first step of using molecular dynamics 
(MD) with a reactive force field (ReaxFF) to predict the structure and mechanical behavior 
of the GNP/epoxy materials at the molecular level. A micromechanics approach is then 
used to model and predict the mechanical properties of the CF/GNP/epoxy hybrid 
composite at the bulk level. One of the major findings of this study refers to an alignment 
behavior of phenyl rings in epoxy with the planar GNP surface at the interphase region. 
This alignment plays an important role to drive the molecular density of epoxy at the 
interphase and promote the GNP-epoxy interfacial adhesion. The results also validate the 
use of ReaxFF in MD modeling of such nanocomposites as the predicted properties 
compare well with experiment.   

The impact on the mechanical properties of aerospace epoxy materials reinforced with 
pristine GNP, highly concentrated Graphene Oxide (GO), and Functionalized Graphene 
Oxide (FGO) has also been investigated in this study. A systematic computational approach 
to simulate the reinforcing nanoplatelets and probe their influence on the mechanical 
response of the epoxy matrix at both nanoscale and bulk levels. The nanoscale outcomes 
indicate a significant degradation in the in-plane elastic and shear moduli of the 
nanocomposite when introducing large amounts of oxygen and functional groups to the 
robust sp2 structure of the GNP. However, the wrinkled and rough topology of GO and 
FGO promotes the nanoplatelet-matrix interlocking mechanism which produces a 
significant improvement in the out-of-plane shear modulus. In addition, surface 
functionalization of GNP promotes the nanoplatelet-epoxy interfacial interaction/adhesion 
significantly which is important for the material toughness. Using micromechanics 
analysis, the influence of the nanoplatelets content and aspect ratio on the mechanical 
response of the proposed nanocomposites has also been predicted and validated with 
experimental data available from the literature. Generally, there is an improvement in the 
predicted mechanical response of the bulk nanocomposite materials with increasing 
nanoplatelets content and aspect ratio.  

The predicted mechanical properties of the nanoplatelet/epoxy nanocomposites are 
then used to generate hybrid composite models reinforced with unidirectional CF. The 
micromechanics predictions are used to analyze the reinforcing effect of the proposed 
nanoplatelets on the unidirectional CF/nanoplatelet/epoxy hybrid composites. Three 
laminated hybrid composite panels are also modeled and analyzed to address the 
reinforcing effect of the proposed nanoplatelets on the laminated hybrid composite panels. 
The predicted mechanical properties of the laminated hybrid composite panels are 
important in assessing the mechanical performance of in-service structural components. 
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Chapter 1 
 

INTRODUCTION 

1.1 Motivation  

Over the last several decades the aerospace industry has pursued the improvement of 
aircraft fuel efficiency, which in turn has driven the development of high-performance, 
lightweight structural composite materials [1-5]. Many major structural components in the 
passenger aircraft, Airbus 380, have been made from carbon fibre (CF) composites. About 
25% of the entire weight of the Airbus 380 (~280 tons as the typical operating empty 
weight) is made from composite materials. Interestingly, about 50% of the entire structural 
mass in Boeing 787 and Airbus A350 is built using carbon fiber–epoxy composite 
materials. With respect to the use of composite materials in military aircraft, about 35% of 
the entire structural weight in the US fifth-generation combat aircraft F-35 Lightning II and 
40% of the entire structural weight in the Eurofighter Typhoon was made from epoxy-
based composites reinforced with carbon fibers [6]. Although traditional carbon fiber 
composites are now well-established for use in structural components such as fuselages 
and wings (Figure 1.1), the development of a new generation of hybrid composites that 
incorporates nanoparticles (e.g. carbon nanotubes and graphene nanoplatelets) could result 
in composites with improved properties [7-10]. Such hybrid composite materials are 
promising for aeronautical and aerospace structural applications. Thus, persistent research 
effort is necessary towards achieving the goal of synthesizing lightweight and ultra-
strength composite materials. 

 

 
Figure 1.1: Production of a fuselage composite panel using automated fiber placement 

(AFP) technology (Courtesy of Electroimpact, Inc. See Appendix C.1 for copyright 
agreement). 
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The success of using epoxy-based nanocomposite materials as the alternative for some 
traditional metallic alloys represents a great milestone in the aerospace industry [5, 11, 12]. 
The exceptional mechanical, thermal, and electromagnetic properties of graphene 
nanoplatelets, along with their relatively low cost concerning other nanofillers make them 
ideal candidates for strengthening epoxy matrices [13]. Additionally, the decent and natural 
affinity between graphene and epoxy monomers can be chemically improved to promote 
their adhesion [14, 15]. The chemical integrity of such carbon allotrope nanofillers and 
their content, shape, size, orientation, dispersion, and interfacial interaction with polymers 
play an important role in establishing a robust load transfer network in the nanocomposite 
[16, 17]. Therefore, the key point for optimizing the mechanical properties of 
nanocomposite materials is governed by these factors, which are referred to as the key 
processing parameters.  

There is some difficulty in dealing with the wide range of factors that can affect the 
structure of epoxy-based composite material. This can be manifested by the additional 
effort that is required to manipulate and control the mutual effect of these factors on the 
mechanical response of a nanocomposite. For example, increasing the content of graphene 
in a polymer matrix can significantly improve the mechanical response of the 
nanocomposite. Yet, a detrimental effect can occur due to graphene agglomeration (low 
dispersion). Also, an increase in the matrix viscosity could arise at high levels of graphene 
content. These two undesirable features can lead to a significant degradation in material 
mechanical properties. Despite the possibility of the trade-off impact of the key processing 
parameters on the mechanical properties of nanocomposite material, these factors 
altogether keep the door open to improving the composite properties. 

Experimental studies have contributed significantly to the development of polymer-
based composite materials reinforced with carbon allotropes. However, experimental work 
can be expensive and practically limited to handling the effect of a few numbers of the key 
processing parameters mentioned above. Thus, the development of these materials can be 
greatly facilitated with efficient and accurate computational simulation techniques. Given 
the advances in computational tools and high-performance computing (HPC) 
infrastructures, polymer-based composite materials could be extensively investigated to 
acquire a deep physical insight starting at the molecular level up to the bulk level. 

1.2 Background 

 This section involves background on key topics used in performing this work. 

1.2.1 Computational Tools versus Experiments  

Experimental studies of polymer-based composite materials require the use of 
sophisticated apparatus’, tools, and microscopies which allows users to probe the molecular 
structure of the material. X-ray diffraction (XRD), Fourier transform infrared spectroscopy 
(FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse 
reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), transmission 
electron microscopy (TEM), scanning electron microscopy (SEM), atomic force 
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microscopy (AFM), EDX elemental mapping, photo-electrochemical measurements, and 
thermal-gravimetric analysis (TGA) are necessary for surface analysis, imaging, 
characterizing, and investigating nanocomposite materials. Even though these tools are 
crucial and provide fundamental information in the field of studying such materials, there 
is still a need to know more. For example, the degree of polymerization of a polymer or its 
crosslinking density, density distribution, and the molecular structure at the interphase 
region of the nanocomposite constituents cannot be fully resolved with the available 
experimental tools. For these reasons, computational tools have been developed and widely 
used to complement experiments to provide a complete understanding of composite 
structures at both molecular and bulk levels.  

1.2.2 Molecular Mechanics 

From the computational perspective, molecular mechanics (MM) employs classical 
physics to simulate the molecular geometry and predict the potential energy surface of a 
molecular system. The term molecular mechanics was initially established in the 1970s to 
clarify that classical mechanics is applicable to determine the equilibrium state in a 
molecular structure. In that context, the process of MM has also been referred to as 
“Molecular Minimization”. For a molecular system, several assumptions need to be 
considered with MM: 

 
• The entity of an atom is treated as an individual sphere. 
• The chemical environment of an atom defines its type, e.g. carbon atom in 

Methane (CH4) is different than carbon atoms in graphene. 
• Classic spring force representation is used to model covalent bonds between 

atoms. 
• Noncovalent interactions need to be considered in the energy function 

formulations. 
• Accurate experimental parameters of intermolecular forces and pair potentials are 

fundamental for the potential energy functions of the molecular system. 
• Individual potential energy functions are compiled together to produce the overall 

potential energy function or magnitude of the molecular system. 
 

The computational approach with MM requires parameter sets which are known as 
force fields. The parameter sets in a force field are essential for the potential energy 
functions used to determine the potential energy of a molecular system at different 
configurations. Because MM is not applicable for electronic properties, molecular 
modeling with MM requires less computational effort than quantum mechanical methods 
and conserves the required accuracy. Furthermore, MM can be implemented to model large 
molecules such as polymers and proteins. Further details about intermolecular forces and 
potential energy formulations can be found in “Molecular Modelling for Beginners” by 
Alan Hinchliffe [18].    
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1.2.3 Molecular Dynamics  

While MM is used to predict the local minima of molecular potential energy surfaces, 
molecular dynamics (MD) is used to model and study the time evolution of infinitesimal 
molecular systems. MD uses computer simulations to study the local vibrations, rotations, 
and translations of interacting particles within a physical domain. These particles can be a 
set of atoms or molecules. Generally, MD simulation processes are computationally 
expensive (see Appendix A.2). Thus, atoms and molecules are only allowed to interact for 
a very limited period of time in the range of a few nanoseconds (ns). The computational 
approach with MD involves applying Newton’s equations of motion on the interacting 
particles and solving them numerically to determine their trajectories at every time step of 
the simulation. These equations of motion utilize the intermolecular forces and pair 
potentials that are already established with MM. 

MD simulations can be performed using LAMMPS1 [19, 20], an open-source software 
package which has been primarily developed by researchers at Sandia National Labs and 
Temple University. LAMMPS is a powerful computational tool that has been utilized in 
simulating solid materials and soft matter in a liquid or gaseous state. LAMMPS uses 
Newton’s equations of motion for a specified group of interacting particles. LAMMPS can 
be used to simulate two-dimensional and three-dimensional material systems. Depending 
on the computational resources, the number of particles in the system domain can range 
from several particles to billions of them. For more information about simulation 
principles, features, computational equations, and the usage of LAMMPS commands, an 
MD user can refer to the LAMMPS official documentation website2.  

Polymers and their nanocomposites have been extensively investigated with LAMMPS 
to provide deep physical insight into the material molecular structure under different 
circumstances of loadings and physical or chemical effects [10, 21-23]. It is noteworthy 
that MD simulations with LAMMPS are mainly dependent on the selection of the force 
field which is used in representing the interatomic potentials of the simulated molecular 
system. In other words, more accurate MD simulation outcomes can be obtained using an 
appropriate and efficient force field.  

1.2.4 Force Fields 

Given the background in molecular modeling [18], a force field involves the parameter 
sets and functional forms which can be applied to an atomistic system domain using MM 
and MD to compute or predict its potential energy. These energy functions or interatomic 
potentials are formulated to be implicitly used for molecular mechanics and molecular 
dynamics simulations. The parameter sets of a force field can be derived from either 
experiments or quantum mechanics calculations, such as using Density Functional Theory 
(DFT) simulations. A combined approach for deriving the parameter sets is also possible. 
Generally, there are two types of force field; fixed-bonding (valance) force fields and 
                                                 
1 LAMMPS stands for Large-scale Atomic/Molecular Massively Parallel Simulator 
2 https://lammps.sandia.gov 
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reactive force fields. An intermediate or hybrid force field between the two types is also 
available. 

A fixed-bonding force field uses only chemical terms (e.g. bond lengths, bond angles, 
dihedral angles) to describe pair interactions between atoms in the molecular system. In 
this type of force field, the chemical bonding configurations in the molecular system can 
be stretched and deformed but cannot be broken. A simple mathematical expression for the 
bond potential energy (𝑈𝑈) between two bonded atoms using a fixed-bonding force field 
can be represented by the following Harmonic potential equation: 

 𝑈𝑈 = 𝑘𝑘 ( 𝑟𝑟 −  𝑟𝑟e)2  (1.1) 

where 𝑘𝑘 is a constant that refers to the bond stiffness, r is the distance between atoms, and 
𝑟𝑟𝑒𝑒 is the equilibrium distance between atoms. 

In a reactive force field, however, the parameter sets contain additional terms used to 
define the bond strength order. That is, the bond strength (pair potential) can be modified 
to simulate bonds scission and formation. The mathematical expression for such reactive 
bond can be represented by the following Morse potential equation: 

 𝑈𝑈 =  𝐷𝐷e �1 − exp�−𝛼𝛼(𝑟𝑟 −  𝑟𝑟e)��
2
 (1.2) 

where 𝐷𝐷𝑒𝑒 is the depth of the potential energy well (i.e. the thermodynamic dissociation 
energy of the bond), and 𝛼𝛼 controls the width of the potential energy well. Figure 1.2 
illustrates the difference between the Harmonic and Morse potential energy profiles 
according to Equations 1.1 and 1.2. Clearly, Morse potential is more realistic than the 
Harmonic potential when the bond is significantly stretched. This is because the Harmonic 
potential continues to increase as the distance between atoms increases, which is 
unrealistic. However, the increment in Morse potential settles at the dissociation energy 
value which indicates the bond has broken. 
 

 
Figure 1.2: Harmonic and Morse potential energy profile. 
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The Lennard-Jones (LJ) potential is used to describe the van der Waals (vdW) 
interaction energy between any two neighboring atoms in the system domain. The total 
potential energy of the molecular system is obtained by adding the contributions from other 
energy terms, such as valence angle, torsion, conjugation, charge, and Coulomb energy. 
There are many different types of force fields, and the parameter sets in each have been 
derived and modified to perform specific simulation tasks depending on the molecular 
characteristics of the material. Thus, the selection of an appropriate force field is essential 
for MD simulations. That is, the successful and accurate outcome of MD simulations is 
highly governed by the force field parameter sets used to describe the molecular system 
configurations and its potential energy terms. In this work, two different types of force 
fields were used to perform the MD simulations. The All-Atom fixed-bond Optimized 
Potentials for Liquid Simulations (OPLS-AA) force field [24, 25] has been used to initially 
create, crosslink, and stabilize the molecular structure of the nanocomposite MD systems. 
A reactive force field (ReaxFF) with the parameter sets developed by Liu et al. [26] has 
been used to predict the mechanical response of the nanocomposite MD systems. Further 
information and details about force field parameter sets and types, the mathematical 
derivation of force and energy numerical equations, molecular mechanics, and molecular 
dynamics modeling can be found in “Molecular Modelling for Beginners” by Alan 
Hinchliffe [18], “The Art of Molecular Dynamics Simulation” by D. C. Rapaport [27], 
“Computer Simulation of Liquids” by Michael P. Allen and Dominic J. Tildesley [28], or 
any other relevant source. 

1.2.5 Micromechanics 

The micromechanics predictions in this work were performed using MAC/GMC1 4.0, 
a computer code developed at NASA Glenn Research Center. The computational approach 
in this code is based on the High-Fidelity Generalized Method of Cells (HFGMC) 
micromechanics theory [29-32]. HFGMC is more accurate and efficient in predicting the 
local stress and strain fields relative to the standard GMC. This improvement is essential 
to provide accurate predictions and more detailed analysis for composite materials. 
Specifically, the availability of accurate local stress and strain fields is critical to deal with 
the interphase transition between composite constituents. This is necessary to analyze 
composite material damage and failure such as matrix inelasticity and fiber-matrix 
debonding. In this micromechanics approach, the microscale architecture of materials, 
including composites, is characterized using a doubly and triply periodic repeating unit cell 
(RUC) to model the mechanical behavior and response. The RUC comprises of a number 
of subcells. Each subcell can be used to represent a single phase in heterogeneous or 
composite materials. Thus, the code can be used to analyze a wide range of material 
constitutive models. The constitutive model of the material could be isotropic, transversely 
isotropic, and completely anisotropic. Furthermore, subroutines of user-defined 
constitutive models can be also included in the code. The preference of using MAC/GMC 
4.0 rather than other micromechanics approaches is attributed to the attractive advantages 
of HFGMC over other micromechanics theories in addition to the capabilities and 
                                                 
1 MAC/GMC stands for Micromechanical Analysis Code based on the Generalized Method of Cells. 
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flexibility of MAC/GMC 4.0 code. The HFGMC advantages and the MAC/GMC 4.0 
capabilities and features can be summarized as follows:  

 
• HFGMC involves a fully multiaxial formulation technique.  
• Accurate local stress and strain fields are provided by HFGMC, that is, it has the 

capability to analyze local fiber damage and interface failure between composite 
constituents.  

• MAC/GMC 4.0 is efficient, fast, and provides accurate predictions. 
• The code includes a convenient built-in constitutive model library in addition to the 

ability of creating new models. 
• Smart composites and laminates can be efficiently analyzed using MAC/GMC 4.0. 
• The temperature and electromagnetic effect on the mechanical behavior of the 

material can be considered in the predictions. 
• Capable of predicting both elastic and inelastic behavior of the material. 
• Capable of performing static failure analysis, fatigue damage analysis, maximum 

stress, maximum strain, and Tsai-Hill criteria. 
• MAC/GMC 4.0 can interface with commercial finite element software packages. 

 
For more information and details about features, capabilities, and usage of the code, 

refer to MAC/GMC 4.0 User’s Manual-Keywords Manual [33], and MAC/GMC 4.0 
User’s Manual- Example Problem Manual [34]. 

1.3 Literature Review 

This section reviews experimental and computational research studies which have been 
performed on developing polymer-based composite materials. Different approaches to 
prepare and evaluate GNP-reinforced polymer nanocomposites are briefly cited in this 
section. Although CF/polymer composites are well-established in the literature, some new 
synthesizing or modeling techniques have also been included herein to establish the idea 
of developing the new generation of CF/GNP-reinforced polymer hybrid composites. 

The competitive engineering properties of epoxy matrices relative to traditional 
structural materials have attracted the attention of engineers and manufacturers to be used 
in aerospace composite structural components, in addition to many other engineering 
applications. These thermoset polymer materials are highly processable and possess 
lightweight, high specific stiffness, high specific strength, and excellent corrosion 
resistance. Furthermore, their chemical compatibility with carbon allotropes, which are 
used as reinforcing fillers, has been utilized to produce nanocomposites with improved 
toughness and strength. These carbon additives can also improve the poor thermal and 
electrical conductivities of epoxy matrices. 

Monolayer defect-free sheets of graphene have been reported as the strongest tested 
material [35, 36]. They have attracted the attention of scientists and researchers to be 
utilized in many engineering applications. Their exceptional strength, high specific surface 
area, unique graphitized plane structure, and the high charge mobility have been harnessed 
in improving the mechanical, thermal, and electrical properties of polymer matrices. Unlike 
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the reinforcing effect of CF which is restricted with its longitudinal direction, a global or 
three-dimensional reinforcing effect of well-dispersed GNP within the hosting matrix can 
be typically obtained.  

Among the early experimental studies that have been performed in synthesizing 
graphene/polymer nanocomposites, a general approach was presented by Stankovitch et al. 
[37]. Their bottom-up chemical approach involved the preparation of highly dispersed 
chemically modified graphene sheets in organic polymers. Treating exfoliated graphene 
oxide sheets by organic isocyanate was found to help in reducing their hydrophilic 
character and allow for a stable dispersion in polar aprotic solvents. Incorporating about 
0.1 volume percent (vol%) of the modified graphene sheets into polystyrene resulted in 
about 0.1 S m-1 electrical conductivity. The claimed low percolation threshold of graphene 
(~0.1 vol%) is beneficial for a wide range of electrical applications of polymer-based 
composites at room temperature.  

Ramanathan et al. [38] observed an increase in the elastic modulus by 80% and 20% 
improvement in the tensile strength owing to the inclusion of 1.0 weight percent (wt%) of 
high-surface-area functionalized graphene sheets (FGS) in poly(methyl methacrylate) 
(PMMA). The FGS were prepared using a fast-thermal expansion of an entirely oxidized 
graphite. The incorporation of the highly-dispersed FGS in PMMA resulted in a composite 
with mechanical and thermal properties outperforming that resulted from incorporating 
traditional expanded graphite (EG) nanoparticles and even single-walled carbon nanotubes 
(SWNTs) in PMMA. The remarkable improvement in the thermal and mechanical 
properties of FGS-PMMA composite were attributed to three factors: the homogeneous 
dispersion of FGS in PMMA, the large surface area of FGS which allows for stronger 
interfacial interaction with PMMA due to the formation of hydrogen bonds between 
hydroxyl groups in FGS and carbonyl groups in PMMA, and the mechanical interlocking 
mechanism that is triggered by the nanoscale wrinkled topology of FGS. As a result, a co-
continuous network between FGS nanoparticles and PMMA chains was shaped, which 
introduced a fundamental modification to the polymer matrix. 

Later, Shen et al. [39] examined the mechanical properties of graphene reinforced 
epoxy nanocomposite. They noticed that the inclusion of 0.5 wt% of graphene flakes, 
resulted in an increase in the Young’s modulus from 2.0 to 3.1 GPa when tested at room 
temperature, and from 5.9 GPa to 7.4 GPa when tested at cryogenic temperature of 77 K. 
In part of their study, King et al. [40] investigated the effect of GNP content on the tensile 
modulus of the epoxy-based nanocomposite. They observed an increase in the tensile 
modulus by ~23.5% at 6.0 wt% (3.7 vol%) of GNP content.  

Rafiee et al. [41] showed that GNP-based nanocomposites can surpass the properties 
of carbon nanotubes (CNT)-based nanocomposites. Adding a small amount of GNP (0.1 
wt%) can significantly improve the overall mechanical response of an epoxy matrix. The 
improvement in mechanical properties for pure epoxy indicates that GNP/epoxy out-
performs the single/multi-walled CNT/epoxy by: Young’s modulus ~31% for GNP versus 
~3% for single-walled CNT, tensile strength ~40% for GNP versus ~14% for multi-walled 
CNT, and mode I fracture toughness ~53% for GNP versus ~20% for multi-walled CNT. 
In their article, they attributed the substantial improvement in mechanical response of 
GNP/epoxy over CNT/epoxy to the strong nanofiller-matrix adhesion arises due to the high 
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specific surface area of GNP. Also, the wrinkled topology of GNP has enhanced the 
interlocking mechanism with the epoxy matrix. 

Given their high tensile strength, stiffness, and low weight, carbon fibers have been 
used for decades to reinforce polymer matrices and produce structural composite panels. 
Providing the adhesion property of epoxy polymers, unidirectional carbon fibers can be 
held together in a thin composite laminate. The major improvement in the properties of the 
produced composite laminate is mostly restricted or limited to the longitudinal direction of 
the CF. Therefore, a large number of thin laminates with different orientations of CF are 
stacked together to produce high performance laminated composite panels. Recent studies 
on CF/polymer composites have been focused on resolving specific issues such as 
improving the fiber-matrix adhesion and interlaminar shear strength. Zhang et al. [42] 
showed that the fiber-matrix interfacial adhesion plays an important role in addressing the 
mechanical performance of CF/epoxy composites. They observed that the sizing agent used 
in CF surface coating can increase the CF-epoxy interfacial shear strength by ~36.3%. 
Furthermore, adding 5.0 wt% of graphene oxide (GO) to modify the sizing agent can 
increase the fiber-matrix interfacial shear strength by 70.9% relative to that observed for 
virgin CF reinforced epoxy. The CF coated with GO-modified sizing agent was also found 
to enhance the interlaminar shear strength of the laminated composite by ~12.7% relative 
to that observed for CF coated with commercial (unmodified) sizing agents. Later, Pathak 
et al. [43] observed an increase in the mechanical response of CF reinforced epoxy 
composites as 0.3 wt% of GO was introduced to the matrix. The flexural strength, flexural 
modulus, and interlaminar shear strength of the hybrid composite were increased by 66%, 
72%, and 25%, respectively. This substantial improvement in the mechanical properties 
was attributed to the additional reinforcing effect of GO. The large surface area of GO 
nanosheets maximizes interfacial interaction with the hosting matrix in addition to the 
toughening and interlocking mechanism features of GO. Recently, Liu et al. [44] noticed 
that CF coated with sizing agents can increase the interfacial adhesion with the epoxy 
matrix by ~10%, where the interfacial strength increased from 48 MPa to 53 MPa. Grafting 
a CNT layer on the CF surface could further increase the interfacial strength by 3.64% to 
measure 55 MPa. An additional improvement of ~5.2% in the interfacial strength was 
obtained when grafting an oxidized-CNT layer on the CF surface to measure 58 MPa. 

Despite the fundamental role of experiments in studying and developing polymer-based 
composite materials, many predictive computational approaches have been adopted to 
speed up the development wheel of composite materials at minimal cost and effort. Shiu et 
al. [45] performed MD modeling simulations to characterize the thermal and mechanical 
properties of graphene flakes (a chunk comprised of eight graphene sheets stacked 
together), and intercalated GNP and GO each comprised of three individual (dispersed) 
sheets incorporated in epoxy matrix. A general observation in this study indicates that 
intercalated GNP or GO allows for larger surface contact with the epoxy. That is, more 
interphase regions of dense epoxy at the intercalated GNP or GO surfaces which improves 
the load transfer within the nanocomposite. As a result, an improvement in the Young’s 
modulus of intercalated GNP and GO nanocomposite MD models relative to graphene 
flakes-epoxy model. The best reinforcing efficiency was observed in the case of 
intercalated GO/epoxy MD model since it involved the highest interfacial interaction 
between the constituents. 
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To capture the effect of the molecular structure at the bulk behavior of nanocomposites, 
different micromechanics approaches have been employed [9, 22, 23, 46, 47]. Shokrieh et 
al. [48] conducted a combined molecular dynamics-micromechanics procedure to estimate 
the stiffness of randomly dispersed graphene sheets in epoxy matrix. The predicted elastic 
moduli from MD simulations for different sizes of graphene sheets embedded in epoxy 
were extrapolated to capture the actual values of the principal moduli. Then, an empirical 
equation was used to randomize the moduli and obtain an approximated effective stiffness 
of the nanocomposite at the microscale level.  

Using a numerical analysis methodology based on XFEM (eXtended Finite Element 
Method), Bienias et al. [49] investigated the damage mechanism and failure in CF/epoxy 
composites under static tension. The micromechanics modeling approach involved the use 
of Cohesive Zone Method (CZM) to capture the cohesive behavior at the CF-matrix 
interface. The conclusion from this study referred to the fact that the material damage is 
most likely to be initiated and developed at the CF-matrix contact layer. The microstructure 
analysis and XFEM simulations indicated that the failure scenario started with material 
damage and CF-matrix interfacial deboning which then evolved to an intralaminar 
cracking. 

Tomasi et al. [50] performed a computationally-driven study to construct a new 
CF/GNP/epoxy hybrid composite which can be used for the NASA space launch system 
composite exploration upper stage forward skirt structure. The computational approach 
used in this study was based on the Integrated Computational Materials Engineering 
(ICME). The designing scheme started at the molecular level to predict the localized 
mechanical properties of GNP/epoxy interphase region using MD modeling. The next step 
involved the use of MAC/GMC 4.0 for the micromechanics analysis and predictions 
toward constructing a laminated hybrid composite panel. The last step involved using FEM 
to design the space structure component in its full-scale. The material design was optimized 
using both multiscale modeling and experiments to control the key processing parameters 
and acquire better mechanical performance. The multiscale ICME workflow used in this 
study provides a powerful computational approach to model and optimize the properties of 
composite material structures for aerospace applications. 

1.4 Objectives 

The purpose of this work is to develop an efficient multiscale computational approach 
to model and predict the mechanical properties of CF/GNP/epoxy hybrid composites. The 
approach considers the fundamental role of the key processing parameters at different 
levels of the modeling scheme to optimize the material structure and its mechanical 
behavior. Below are the main objective points which are considered in this approach 
towards achieving the main goal: 

 
• Perform MD simulations using an efficient reactive force field to acquire deep 

physical insight into the molecular structure at the GNP-epoxy interphase region, 
such as the molecular mass density distribution and interfacial adhesion. 

• Assess the performance of the reactive force field used to achieve this purpose.   
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• The MD simulations are also intended to predict the molecular structure and the 
localized mechanical properties of the interphase region using different GNP 
configurations. 

• Investigate the GNP agglomeration effect on the predicted mechanical properties 
of the nanocomposite using two certain levels of GNP dispersion degree. 

• Investigate the chemical functionalization influence on the GNP structural integrity 
and its reinforcing function, the molecular structure of the matrix at the interphase 
region, the interfacial interaction and adhesion, and the local mechanical response 
of the interphase region under this consideration.   

• Use micromechanics analysis to transmit the impact of the nanoscale key 
processing parameters mentioned above to the bulk level of the nanocomposite.   

• Use micromechanics analysis to inspect the influence of the GNP content and 
aspect ratio on the mechanical response of the bulk nanocomposite. 

• Evaluate the mechanical performance the CF/GNP/epoxy hybrid composite with 
four different configurations: hybrid composite laminate reinforced with 
unidirectional CF, and three different configurations of laminated composite panel.  

• Consider all the nanoscale key processing parameters in addition the influence of 
CF volume fraction in the predictions of the CF/GNP/epoxy hybrid composite 
configurations. 

 
The computational approach in this study provides a step-by-step systematic modeling 

scheme supported by detailed descriptions and illustrative graphs. Detailed information 
about the adopted MD simulations and micromechanics calculations with figures and plots 
for the obtained results are also provided. The predicted results were discussed and verified 
with experimental data available from the literature.  

1.5 Roadmap  

This section briefly addresses the roadmap of this work. Chapter 1 was written to attract 
the reader’s attention to the importance of research studies on developing polymer-based 
composite materials for the future of the aerospace industry. The brief motivation and 
background were intended to prepare the reader for this topic. The basic definitions, 
information, and resources given in the background and the literature review were also 
intended to help interested readers and beginners to acquire basic knowledge and be aware 
of research tools needed for such research studies.   

The next chapters address the roadmap to achieve the objectives of this study. Chapter 
2 provides a computational case study to model GNP/epoxy nanocomposite with a certain 
level of GNP dispersion. A detailed modeling scheme to create the GNP crystal and the 
epoxy matrix monomers is provided. Subsequent steps of combining the nanocomposite 
constituents, densifying the model, crosslinking (curing) the epoxy monomers, and 
equilibrating the MD model are also included. The MD simulations are utilized to assess 
the performance of the selected reactive force field in predicting the molecular structure 
and its mechanical response at the nanoscale level. The predicted mechanical properties at 
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the nanoscale level are processed using a micromechanics approach to predict the 
mechanical response of the composite at the bulk level.  

Chapter 3 discusses the functionalization effect on the GNP structure, GNP-matrix 
interfacial interaction, and overall mechanical behavior of the nanocomposite. For the first 
time, functionalized GNP MD models are established based on elemental data analysis of 
the functional groups reported for a real case study of functionalized GNP. This modeling 
process involves taking into account the chemical composition of functional groups and 
their chemical concentration on the GNP surface. The modeling scheme in this chapter 
includes illustrative figures and plots supported by a detailed description, analysis, results 
and discussion, and validation.  

Chapter 4 focuses on the micromechanics analysis of CF/GNP/epoxy hybrid 
composites. Several models of the hybrid composite are constructed based on the 
predictions obtained in Chapters 2 and 3 for the GNP/epoxy nanocomposites. In other 
words, the micromechanics analysis of the hybrid composites involves a comparison study 
of the reinforcing effect of the different GNP configurations which are modeled in the 
preceding chapters. The multiscale modeling approach considers the nano/micro/macro 
key processing parameters in optimizing the mechanical behavior and properties of the 
composite material.  

Chapter 5 involves some important suggestions and recommendations for future work 
which can be used to extend the scope of this study. The next section includes the 
references used in preparing this work which are listed based on the in-text citation 
numbers appear in the main text. Additional supporting information, technical resources, 
and the copyright agreement documentation used in this work are provided in the 
appendices.  



www.manaraa.com

13 

Chapter 2 
 

MULTISCALE MODELING OF CF/GNP/EPOXY HYBRID 
COMPOSITE USING A REACTIVE FORCE FIELD  

This chapter focuses on predicting the local molecular structure and mechanical 
properties at the interphase region of the GNP/epoxy nanocomposite using MD modeling 
with a reactive force field. The multiscale computational approach involves using 
MAC/GMC 4.0 to predict the mechanical properties of the nanocomposite at the bulk level. 
The nanocomposite mechanical properties are then implicitly used in the predictions of the 
unidirectional CF/GNP/epoxy hybrid composite at the bulk level. The nanoscale outcome 
provides evidence of an alignment behavior of phenyl rings in epoxy with the planar GNP 
surface at the interphase region. The results also indicate the validity of using a reactive 
force field, as they compare well with experiment [51, 52]1.  

2.1 Introduction  

This chapter is intended to provide deep insight into the molecular structure and the 
mechanical performance of GNP/epoxy nanocomposites. Such computational studies are 
essential for driving the development of the new generation of polymer-based hybrid 
composites reinforced with CF and carbon nanofillers. Hadden et al. [46] performed a 
detailed multiscale computational study validated with experimental work to investigate 
the effect of GNP content and the degree of dispersion on the elastic properties of 
CF/GNP/epoxy hybrid composites. An improvement in elastic properties was observed 
with increasing levels of GNP dispersion and volume fraction. The multiscale modeling 
approach involved MD simulations for the prediction of the material mechanical response 
at the molecular level. The MD simulations utilized the united-atom fixed-bond Optimized 
Potentials for Liquid Simulations (OPLS) force field [24, 25]. LAMMPS implementation 
of OPLS is rather pioneer and it was foremost used for MD modeling of liquids and 
proteins. Its parameter set overestimates energy calculations as it was originally derived 
utilizing the approximated assumptions of the Hartree-Fock theory in quantum mechanics. 
Energy calculation is particularly crucial for the quality of the torsion angles description. 
For this reason, even simple polymers such as longer hydrocarbons failed in the framework 
of the original OPLS. Despite the aforementioned limitations in OPLS, this force field has 
been recently shown to predict accurate mechanical properties of polymer-based composite 
materials within the elastic limit [46].  

At relatively high mechanical strains, the material response can be more accurately 
predicted using the reactive force field (ReaxFF) which was initially developed by van 
Duin et al. [53]. Odegard et al. [10] utilized the ReaxFF parameter set developed by Liu et 
                                                 
1 Most of the material contained in this chapter has been previously published in the ASCE-2018 Earth & 
Space conference proceedings (See Appendix C.2 for copyright agreement). The work was then modified 
and published as a journal article in Composites Part B: Engineering, © Elsevier Ltd (See Appendix C.3 for 
copyright agreement).  
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al. [26] to predict Young’s modulus and yield strength of a crosslinked epoxy system. Due 
to the computational expense, MD simulations are restricted to a few nanoseconds. 
Therefore, deformation simulations must be performed at high strain rates beyond what is 
experimentally feasible. Owing to the high strain rate used in the MD simulation and the 
viscoelastic nature of epoxy, an overestimation trend was observed in the predicted 
mechanical response compared to experiments. Despite the substantial strain rate effect, 
the predicted mechanical properties of the MD model were mathematically correlated with 
experiments considering the large time-scale difference. Under these circumstances, the 
extrapolated experimental results for higher strain rates were within the standard deviation 
of the predicted values. Radue and Odegard [9] utilized ReaxFF in their MD modeling to 
investigate the mechanical behavior of three different epoxy systems reinforced with an 
embedded carbon nanotube (CNT). This work introduced a computational approach to 
assess the mechanical performance of CNT-based nanocomposites depending on the epoxy 
functionality. To minimize the strain rate effect, the predicted elastic modulus for each 
nanocomposite was normalized by its matrix modulus as a convenient baseline. 
Accordingly, a good agreement with experiments was observed as the strain rate effect was 
somewhat mitigated with this approach.    

It is unknown if ReaxFF can be reliably used for simulating polymer-based 
nanocomposites reinforced with GNP. Thus, the objective of this chapter is focused on 
assessing the performance of using ReaxFF in predicting the localized effective mechanical 
properties of GNP/epoxy within the elastic limit. This assessment could open the door for 
future computational research to utilize the reactive features in ReaxFF involving bond 
formation and scission. In this work, a multiscale modeling study was performed to predict 
the effective mechanical properties of CF/GNP/epoxy hybrid composites using ReaxFF. 
First, a unit cell of GNP/epoxy nanocomposite was simulated, and the corresponding 
nanoscale mechanical properties were predicted. Second, these results were used as inputs 
into a micromechanical analysis of a CF/GNP/epoxy hybrid composite. The effective bulk 
mechanical properties were predicted for different volume fractions of GNP in the 
composite matrix. The results show good agreement with experimental values available in 
the literature, demonstrating the accuracy of ReaxFF for modeling hybrid composite 
systems. 

2.2 Multiscale Modeling Approach  

The step-by-step methodology for developing the multiscale model is described in this 
section. A description of the MD modeling and subsequent micromechanics analysis steps 
for predicting the mechanical properties of hybrid composite is included.  

2.2.1 Molecular Modeling (Nanoscale) 

All MD simulations were carried out with the LAMMPS software package with 3D 
periodic boundary conditions to account for the bulk material behavior. The Lennard-Jones 
cutoff distance was set to 10 Å. All post-processing visual snapshots were rendered 
utilizing the OVITO software package [54]. 
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2.2.1.1 Creating GNP-epoxy unit cell 

The MD modeling procedure adopted in this study is based on those found in the 
literature [8-10, 22, 23, 46, 55-57]. In most of these modeling studies, the fixed-bond force 
field OPLS was used to initially create epoxy monomer solutions and perform the 
crosslinking reactions using a wide range of approaches. Using a fixed bond force field 
during this modeling step enables the creation of the epoxy crosslinked network via the 
“fix bond/create” LAMMPS command. The presence of physical bonding connectivity 
between atoms allows the user to track and update the topology of the molecular structure 
using a python script. 

Figure 2.1 shows the EPON 862 (diglycidyl ether of bisphenol F, DGEBF) molecule, 
which has 43 atoms, and the EPIKURE curing Agent W (diethyltoluenediamine, DETDA) 
molecule, with 31 atoms, were separately created using the ChemDraw Professional 
software package, version: 15.0.0.106, PerkinElmer Informatics, Inc. The OPLS-All Atom 
(OPLS-AA) force field was initially used to build the molecular structures. The 
stoichiometric mixture 2:1 of the epoxy system (two EPON 862 molecules to one DETDA 
molecule) was created in a periodic MD simulation box comprising 117 atoms (Figure 
2.2.a). This mixture was replicated 16 times to form a larger system that contained 48 
monomers with 1872 atoms (Figure 2.2.b). This system was subjected to 1 ns of MD 
simulation using the NVT ensemble (constant number of atoms, volume, and temperature) 
at 300 K followed by a molecular minimization simulation to establish a 
thermodynamically equilibrated structure. The epoxy molecules at this point had a low 
mass density and were clustered together due to vdW interaction (Figure 2.2.c). The epoxy 
cluster was replicated in the z-direction, leaving a space to insert a GNP sheet in the 
subsequent simulation step (Figure 2.2.d). At this point, the epoxy system included 3744 
atoms forming 96 molecules (64:32 monomer ratio).  

 

 
Figure 2.1: Molecular structures of epoxy monomers (EPON 862/DETDA). 
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Figure 2.2: The MD modeling scheme to create the 4-layer GNP/epoxy unit cell. 

 
A LAMMPS script utilizing the “lattice” command was used to generate a crystal 

structure of the 4-layer GNP. The lattice parameters for the planar structure of graphene 
and the crystal structure of graphite were taken from Gray et al. [58]. To account for 
graphene agglomeration, a procedure similar to that used by Hadden et al. [46] was 
implemented in which the generated GNP molecule was comprised of four graphene 
sheets/layers, where each layer included 576 carbon atoms (Figure 2.2.e). Hence, the 4-
layer GNP included 2304 carbon atoms. Both MD data files from epoxy and the GNP were 
combined into one MD data file which represented the unit cell of the nanocomposite 
(Figure 2.2.f). The assembled unit cell (simulation box) of the 4-layer GNP/epoxy 
nanocomposite had 6048 atoms. It was subjected to several steps of size reduction along 
the z-axis to densify the epoxy monomers to the expected bulk level (Figure 2.2.g). A 
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constant temperature of 300 K was maintained with the Nose/Hoover thermostat while the 
simulation box size was gradually decreased to reach the target density. It is important to 
note that the simulation box is relatively small due to the high computational cost of using 
ReaxFF. Thus, five replicates of the MD model were developed for statistical sampling. 
This approach provided the appropriate uncertainty in the predicted mechanical properties, 
which is critical for discrete molecular structures of this size. 

The targeted mass density of the epoxy system from the densification process was 
approximately 1.2 g/cm3, which is the observed mass density for this system [56]. Figure 
2.3 (left) shows a representative volume element (RVE) of the 4-layer GNP/epoxy 
nanocomposite unit cell after the densification process (not yet crosslinked). The 
simulation box size measured 40×39×37 Å along the x-, y-, and z-axis, respectively. It is 
important to note that the lateral size of the MD simulation box is governed by the lateral 
size of the GNP crystal. Also, the z-axis length of the RVE was selected to completely 
encompass the ~10 Å interphase region [8]. The wt% of the GNP in the RVE was about 
52%, and the spatial mass density distribution along the z-axis is illustrated in Figure 2.3 
(right). The four mass density spikes in the middle represent the four layers of the GNP. 
The next smaller spikes represent the epoxy mass density concentration in the interphase 
region. These results are consistent with those reported previously [8, 46], which employed 
a fixed-bond potential. 
 

 
Figure 2.3: MD modeling; (left) Representative volume element for 4-layer GNP/epoxy, 

(right) Spatial density distribution along z-axis. 

2.2.1.2 Epoxy curing (crosslink algorithm) 

A dynamic crosslinking approach was used to perform the curing reactions between 
epoxy monomers. It is based on the approach used by Varshney et al. [55]. Generally, all 
C (carbon) atoms in the epoxide groups in the EPON 862 monomers have the same 
probability to react only once and form a covalent bond with a N (nitrogen) atom from the 
amine groups in the DETDA monomers. Each N atom can react twice and form two 
covalent bonds with two different C atoms in the epoxide groups (Figure 2.4). The “fix 
bond/create” LAMMPS command was used to create the N-C bonds. A Python script was 
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developed to complete the crosslink reaction and update the topological information of the 
epoxy system. 

 

 
Figure 2.4: Epoxy curing reaction. 

 
The crosslinking process was performed using a BASH (Bourne-Again SHell) script to 

run LAMMPS and Python scripts iteratively until a crosslink density of 80% was achieved 
(Figure 2.5), which was shown by Hadden et al. [46] to be sufficient for accurate prediction 
of bulk mechanical properties of CF/GNP/epoxy hybrid composites. The MD models were 
equilibrated for 1 ns using the NPT ensemble (constant number of atoms, pressure, and 
temperature) at 300 K. The Nose/Hoover anisotropic barostat was implemented during the 
simulation to stabilize the molecular structure and minimize the overall residual stresses in 
the MD cell. Such internal residual stresses are likely to be produced during the epoxy 
crosslinking reactions. 

 

 
Figure 2.5: Crosslinking flowchart. 
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2.2.1.3 Import into ReaxFF 

The main objective of this work was to assess the validity of using ReaxFF in analyzing 
the mechanical response of CF/GNP/epoxy hybrid composites. Therefore, once the five 
MD replicates were well equilibrated using OPLS, a transition to ReaxFF with the 
parameterization of Liu et al. [26] was performed. First, the transition process was 
performed slowly using a time step of 0.1 fs with 1 ns of MD simulation. In order to sustain 
the molecular structure integrity, the simulation temperature was gradually increased from 
1 K to 300 K. This helped to constrain the atomic natural vibrations and velocities during 
the early steps of the transition process. After completing the transition into ReaxFF, the 
MD models were further equilibrated for 1 ns of MD simulation using the NPT ensemble 
at 300 K with the anisotropic Nose/Hoover barostat. Eventually, each of the five relaxed 
MD models had a simulation box size of 40×39×36 Å with a GNP volume fraction of 
~36%. 

2.2.1.4 Interphase region of GNP-epoxy 

The structural integrity and mechanical performance of nanocomposites are highly 
governed by the interphase region [46]. The pi-stacking interaction between phenyl rings 
in polymers and hexagonal surfaces of GNP is the primary driver for the formation of the 
interphase region [59-61]. It is important to note that the MD modeling herein does not 
explicitly account for the interaction of pi-orbitals. In spite of this, some features are 
moderately captured by a simple non-bonded potential, such as the potential energy 
variations along graphitic surfaces [62]. Interesting visual results were obtained from the 
equilibrated MD models by utilizing the “slice” tool in OVITO. Figure 2.6 shows the top 
views of 2 Å thick slices that were taken from a representative MD simulation box at 
different distances from the GNP. Clearly, most of phenyl rings at the interphase region 
are aligned with the GNP surface, which corresponds to the mass density spike around z = 
8.5 Å. However, the alignment decreases with distance from the GNP, which can be clearly 
observed in the slices far from the GNP surface. Thus, a typical epoxy mass density (~1.2 
g/cm3) was observed beyond a distance of ~10 Å from the GNP surface. 

 To examine this issue further, a Python script was written to calculate the angle 
between the normal to each phenyl ring in the epoxy molecules and the normal to the GNP 
surface or the xy-plane. The results are shown in Figure 2.7 for various points along the z-
axis. The data confirms the stacking interaction at the interphase region, where most of 
phenyl rings are aligned with the GNP within the range of 8-10 Å. Yang et al. [61] asserts 
that such alignment can help to increase the interfacial binding between the two 
constituents. Another finding in the current work was that the GNP/epoxy interfacial 
interaction decreases with the increase of epoxy molecular weight. This is because the 
extension of the epoxy network during the crosslinking process limits the orientation of 
epoxy phenyl rings with respect to the GNP. Figure 2.8 illustrates how the epoxy mass 
density slightly decreased at the interphase region as the crosslink density reached 80% for 
both OPLS and ReaxFF force fields. 
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Figure 2.6: Alignment of phenyl rings in epoxy near the GNP surface. 

 
 

 
Figure 2.7: The angle between the normal to each phenyl ring in the epoxy molecules and 

the normal to the GNP surface: (left) angle distribution along z-coordinate, (right) 
histogram of region (8-10) Å 
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Figure 2.8: Crosslink effect on mass density distribution 

 
Figure 2.9 shows the interfacial interaction energy (𝐼𝐼𝐼𝐼𝐸𝐸) averaged over the five MD 

replicates. The 𝐼𝐼𝐼𝐼𝐸𝐸 was calculated to assess the interfacial adhesion between GNP and 
epoxy. The calculation process involved subtracting the isolated potential energy of the 
GNP (𝑃𝑃𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺) and epoxy (𝑃𝑃𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑥𝑥𝑦𝑦) from the total potential energy of the entire model 
(𝑃𝑃𝐸𝐸𝑀𝑀𝑀𝑀) [9]: 

 𝐼𝐼𝐼𝐼𝐸𝐸 = 𝑃𝑃𝐸𝐸𝑀𝑀𝑀𝑀 − 𝑃𝑃𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺 − 𝑃𝑃𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑥𝑥𝑦𝑦 (2.1)  

 
Figure 2.9: Interfacial Interaction Energy 
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The more negative the 𝐼𝐼𝐼𝐼𝐸𝐸 is, the stronger the GNP/epoxy attraction. With the OPLS 
force field, the 𝐼𝐼𝐼𝐼𝐸𝐸 decreased by ~16% after crosslinking. This behavior indicates the 
reduction in the GNP/epoxy interfacial adhesion which can be attributed to the change in 
the epoxy network after crosslinking. In other words, the increase in the molecular weight 
of epoxy network resulted in a lower mass density of the epoxy matrix at the interphase 
and lower 𝐼𝐼𝐼𝐼𝐸𝐸 with GNP. A similar trend was observed by Radue and Odegard [9] in their 
CNT/epoxy MD models. They demonstrated that the CNT/epoxy interaction is directly 
governed by the matrix mass density at the interphase. With ReaxFF, the 𝐼𝐼𝐼𝐼𝐸𝐸 settled to a 
much higher value than that for the crosslinked epoxy with OPLS (~33% increase). This 
extra amount of 𝐼𝐼𝐼𝐼𝐸𝐸 is attributed to the Coulomb and charge equilibration energy 
contributions in the potential energy with ReaxFF. In fact, the potential energy vector 
evaluated using the “pair-style reax” command includes 14 energy terms. Thus, a more 
comprehensive representation of the molecular interaction can be obtained with ReaxFF 
relative to OPLS. Moreover, OPLS is derived for simulations of liquids and does not 
provide parameters for graphene. As a result, ReaxFF is expected to perform better than 
OPLS in predicting the mechanical response of GNP/epoxy MD models under applied 
mechanical loads. 

2.2.1.5 Mechanical response (nanoscale)  

Once the five GNP/epoxy MD models were well-equilibrated with ReaxFF, they were 
subjected to three simulated tensile strains along the x-, y-, and z-directions; and three shear 
strains in the xy-, xz-, and yz-planes. In order to account for the Poisson contraction, the 
axial tensile strains were performed using NPT ensemble with the Nose/Hoover barostat 
in the lateral directions to maintain one-atmospheric pressure surfaces. The shear strain 
simulations were performed using the NVT ensemble, and the “triclinic” parameter was 
activated for the simulation boxes using the “change_box” command in LAMMPS. This 
step is necessary to increase the degrees of freedom of the simulation box from three 
(deformations along x, y, z axes) to six (deformations along x, y, z axes and tilts in the xy, 
xz, yz planes). Thus, both axial and shear deformations of the simulation box are possible. 

All MD models were subjected to a maximum engineering strain of 5%. The 
mechanical deformation simulations were performed for the models constructed with both 
the OPLS and ReaxFF force fields. Each deformation simulation in OPLS was carried out 
gradually, at a strain rate of 0.5×108 s-1, over a total simulation time of 1 ns using 0.1 fs 
time steps. The simulations with the OPLS force field were used to estimate the elastic 
mechanical response and validate the current MD simulation procedure with Hadden et al. 
[46]. The deformations for each of the five equilibrated MD models using ReaxFF were 
carried out gradually, at a strain rate of 1×108 s-1, over a total simulation time of 0.5 ns 
using 0.1 fs time steps. It is important to note that due to the very high computational time 
cost for MD simulations with ReaxFF relative to OPLS, the deformation simulations with 
ReaxFF were accelerated by increasing the strain rate. It has been established that for strain 
rate values less than 22×108 s-1 there was no effect observed on the predicted mechanical 
response for simulated carbon allotropes [63]. To verify that this is applicable to the current 
MD modeling, deformation simulations for one of the MD replicates were performed using 
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ReaxFF with a strain rate 0.5×108 s-1. The results indicated an identical mechanical 
response as the strain rate was increased from 0.5×108 s-1 to 1×108 s-1. The predicted 
mechanical properties from MD models are listed in Table 2.1, along with the results from 
Hadden et al. [46]. Each specific property was averaged over the five MD models, and the 
uncertainty in the table represents the corresponding standard deviation. 

At this point, it is important to highlight two important issues considered in this work. 
First, OPLS was not used for accuracy purposes. Its predictions were used as a baseline to 
compare the predicted properties from ReaxFF. OPLS was used in many legacy MD 
studies [8, 46, 56] which makes it a perfect candidate for benchmarking purposes. Second, 
the point of using ReaxFF herein is just to verify its advantage and accuracy in predicting 
the elastic properties and molecular structure of polymer nanocomposites, not to prove that 
the additional capabilities of ReaxFF are necessary for simulating polymer 
nanocomposites. 

Table 2.1: The predicted mechanical properties for the 4-layer GNP/epoxy 
nanocomposite MD model, all moduli are given in (GPa). 

  
a Present work: Average over five replicates of MD models, using OPLS-AA (All Atom) 

force field, 6048 atoms, 4-layer GNP/epoxy nanocomposite, 80% crosslink density, 36% 
GNP volume fraction (52.0 wt%), 0.5×108 s-1 strain rate, 5% maximum engineering 
strain. 

 
b Present work: Average over five replicates of MD models, using ReaxFF force field, 6048 

atoms, 4-layer GNP/epoxy nanocomposite, 80% crosslink density, 36% GNP volume 
fraction (52.0 wt%), 1×108 s-1 strain rate, 5% maximum engineering strain. 

 
c Hadden et al. (2015): One MD model, using OPLS-UA (United Atom) force field, 37550 

atoms, 4-layer GNP, 80% crosslink density, 33% GNP volume fraction, 0.5×108 s-1 strain 
rate, 5% maximum engineering strain. 

 

Property Present work 
(OPLS)a 

Present work 
(ReaxFF)b 

Hadden et al. 
(OPLS)c [46] 

𝐸𝐸𝑥𝑥 290.32±1.23 425.40±2.55 293.1 
𝐸𝐸𝑦𝑦 289.24±1.60 415.50±3.53 295.5 
𝐸𝐸𝑧𝑧 3.122±0.367 5.331±0.559 3.251 
𝐺𝐺𝑥𝑥𝑦𝑦 104.92±0.79 102.00±1.03 72.50 
𝐺𝐺𝑥𝑥𝑧𝑧 0.040±0.021 0.019±0.016 0.001 
𝐺𝐺𝑦𝑦𝑧𝑧 0.044±0.022 0.020±0.013 0.001 
𝑣𝑣𝑥𝑥𝑦𝑦 0.290±0.001 1.005±0.001 0.159 
𝑣𝑣𝑦𝑦𝑥𝑥 0.294±0.002 0.980±0.002 0.156 
𝑣𝑣𝑧𝑧𝑥𝑥 0.004±0.001 0.002±0.001 0.011 
𝑣𝑣𝑧𝑧𝑦𝑦 0.005±0.001 0.002±0.001 0.009 
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2.2.2 Micromechanics Modeling (Microscale) 

Once the effective mechanical properties from the MD simulations were predicted 
within the elastic limit, their averaged values over the five MD models with ReaxFF were 
utilized in the next level of analysis (microscale). MAC/GMC 4.0 was used for these 
predictions by generating a RUC to represent the periodicity of material microstructure. 
The RUC is composed of a discrete number of subcells, where each subcell represents a 
single phase of the composite. For more information about MAC/GMC 4.0 and its usage, 
please refer to Chapter 1; subsection 1.2.5 Micromechanics. In this work, three sequential 
steps were adopted toward the ultimate prediction of the microscale mechanical properties 
of the hybrid composite. Figure 2.10 schematically illustrates the multiscale modeling 
workflow. Further details about the micromechanics analysis based on the three 
continuum-level steps are discussed in the following subsections. 

 

 
Figure 2.10: The multiscale modeling workflow of CF/GNP/epoxy composite. 
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2.2.2.1 GNP dispersion (randomization) 

The 4-layer GNP/epoxy interphase region shown in Figure 2.10.a was implicitly 
captured within the MD-predicted effective mechanical properties. In order to model the 
arbitrary orientation of individual GNPs in the neat epoxy matrix, the effective mechanical 
properties of the molecular models using ReaxFF (Table 2.1) were further processed to 
predict the effective isotropic properties of the GNP/epoxy nanocomposite, as shown in 
Figure 2.10.b. The equations of Christensen and Waals [64] were used for this purpose. 

2.2.2.2 The GNP volume fraction 

The effective mechanical properties of the isotropic system shown in Figure 2.10.b 
were used as input to a MAC/GMC 4.0 script to generate a RUC of a GNP/epoxy 
nanocomposite. A built-in RUC (ARCHID=1) that contains 8 subcells was utilized to 
adjust the required GNP volume fraction in the neat epoxy matrix, as shown in Figure 
2.10.c. In order to model a specific GNP volume fraction (𝑉𝑉𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺/𝑅𝑅𝑅𝑅𝑅𝑅) in the GNP/epoxy 
nanocomposite, it was necessary to adjust the size of the subcell that represents the 
effective mechanical properties of the randomly oriented GNP in epoxy with respect to the 
subcells of bulk epoxy (𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀/𝑅𝑅𝑅𝑅𝑅𝑅). The GNP volume fraction within the simulated MD 
sample (𝑉𝑉𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺/𝑀𝑀𝑀𝑀) was ~36%. Thus, the overall 𝑉𝑉𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺/𝑅𝑅𝑅𝑅𝑅𝑅 can be determined from the 
direct product of 𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀/𝑅𝑅𝑅𝑅𝑅𝑅  and 𝑉𝑉𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺/𝑀𝑀𝑀𝑀 [9, 46].  According to this approach, it is feasible 
to choose the GNP volume fraction and acquire the mechanical properties of the 
nanocomposite without the need for new MD simulations. 

2.2.2.3 Hybrid composite 

A subsequent MAC/GMC 4.0 script was written to model the CF/GNP/epoxy hybrid 
composite. A built-in RUC (ARCHID=13) of a 26 × 26 circular array was selected to 
represent the carbon fiber architecture while the surrounding area represented the 
GNP/epoxy matrix, as shown in Figures 2.10.d,e. The homogenized properties that were 
calculated for randomly oriented GNP in epoxy for a specific value of 𝑉𝑉𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺/𝑅𝑅𝑅𝑅𝑅𝑅  were 
used as the new matrix properties in the RUC for the hybrid composite. AS4 carbon fiber 
was modeled to reinforce the GNP/epoxy nanocomposite matrix, and its properties are 
given in Table 2.2. 

Table 2.2: AS4 carbon fiber (HexTow®) 
 
 

 
 
 
 
 

Property value 
Axial modulus, GPa 231 
Transverse modulus, GPa 9.6 
Shear modulus, GPa 112 
Poisson’s ratio 0.30 
Fiber volume fraction 56% 
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2.3  Results and Discussion 

The predicted properties of the 4-layer GNP/epoxy and CF/GNP/epoxy composites are 
described in this section.  Comparison to literature values is provided for model validation. 

2.3.1 GNP/Epoxy Nanocomposite 

Hadden et al. [46] evaluated the effective mechanical properties for the same 
nanocomposite material using the fixed-bond OPLS force field. Despite the difference 
between the two MD models (namely; model size, force field, and GNP volume fraction), 
the effective mechanical properties that were predicted herein using OPLS provide a good 
indication regarding the validity of the present MD simulations (Table 2.1). However, there 
is a relative discrepancy in the predicted mechanical properties between OPLS and 
ReaxFF. Providing the discussion mentioned above concerning the parameter set of OPLS, 
the observed differences most likely originate from inaccuracy in bonding terms in OPLS. 
The discrepancy can be recognized in the in-plane Young’s modulus 𝐸𝐸𝑖𝑖𝑒𝑒  which is the 
average of the two orthogonal moduli 𝐸𝐸𝑥𝑥 and 𝐸𝐸𝑦𝑦, and it is essentially dominated by the in-
plane elastic modulus of the GNP. A similar discrepancy is observed with the in-plane 
Poisson’s ratio 𝑣𝑣𝑖𝑖𝑒𝑒, which is the average of 𝑣𝑣𝑥𝑥𝑦𝑦 and 𝑣𝑣𝑦𝑦𝑥𝑥.  Using the experimental in-plane 
elastic modulus (1.06 ± 0.02 TPa) and in-plane Poisson’s ratio (0.16 ± 0.06) of graphite 
[65], the experimental elastic modulus of epoxy (2.72 GPa) [40], and a GNP volume 
fraction of 36%, a simple estimation using the rule of mixtures results in an effective in-
plane modulus for the GNP/epoxy nanocomposite of 413.5 GPa. This value is very close 
to what was predicted herein with MD modeling using ReaxFF, which indicates a more 
reliable prediction with ReaxFF. 

Clearly, the out-of-plane Young’s modulus (𝐸𝐸𝑒𝑒𝑒𝑒 or 𝐸𝐸𝑧𝑧) is much lower than the in-plane 
modulus because its magnitude is governed by the vdW interaction between GNP layers 
and interfacial interaction between GNP and epoxy. It is speculated that the inclusion of 
Coulomb and charge equilibration terms in the ReaxFF calculations caused the relative 
increase in the predicted modulus relative to the corresponding value calculated using 
OPLS. Regarding the predicted out-of-plane Poisson’s ratio 𝑣𝑣𝑒𝑒𝑒𝑒, which is the average of 
𝑣𝑣𝑧𝑧𝑥𝑥 and 𝑣𝑣𝑧𝑧𝑦𝑦, a rather good agreement is observed in the predicted values using OPLS with 
those from Hadden et al. [46]. In contrast, the value of 𝑣𝑣𝑒𝑒𝑒𝑒 predicted using ReaxFF was 
much lower than that predicted with OPLS, which can also be attributed to the atomic 
charge terms used with ReaxFF. 

Interestingly, the values of the in-plane shear modulus 𝐺𝐺𝑖𝑖𝑒𝑒 or 𝐺𝐺𝑥𝑥𝑦𝑦 were in excellent 
agreement between the two force fields, but they are significantly greater than that reported 
by Hadden et al. [46] (Table 2.1). For a transversely isotropic material, the well-known 
relation derived by Hashin 𝐺𝐺𝑖𝑖𝑒𝑒 =  𝐸𝐸𝑖𝑖𝑒𝑒 �2�1 + 𝑣𝑣𝑖𝑖𝑒𝑒��⁄  [66] clearly implies the direct 
dependency of 𝐺𝐺𝑖𝑖𝑒𝑒 on 𝐸𝐸𝑖𝑖𝑒𝑒, which in turn depends on the Young’s modulus of GNP. For 
example, 𝐸𝐸𝑖𝑖𝑒𝑒  and 𝑣𝑣𝑖𝑖𝑒𝑒 can be calculated from the predicted properties in ReaxFF to be 420.5 
GPa and 0.993, respectively. Applying Hashin’s equation utilizing these values results in 
a 𝐺𝐺𝑖𝑖𝑒𝑒 value equals to 105.5 GPa, which is in excellent agreement with the predicted values 
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provided herein. The out-of-plane shear modulus 𝐺𝐺𝑒𝑒𝑒𝑒, which is the average of the two shear 
moduli 𝐺𝐺𝑥𝑥𝑧𝑧  and 𝐺𝐺𝑦𝑦𝑧𝑧, is very low as its magnitude is governed by the vdW interaction 
between GNP layers and interfacial interaction between GNP and epoxy. 

Figure 2.11 shows the elastic modulus of the GNP/epoxy nanocomposite as a function 
of the overall 𝑉𝑉𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺/𝑅𝑅𝑅𝑅𝑅𝑅. It represents the response of the isotropic system achieved by 
randomly orienting the GNP in three-dimensional space. Two distinct points can be clearly 
recognized from the response curve shown in Figure 2.11. First, the response from the 
present work is relatively close the computational and experimental response reported by 
Hadden et al. [46]. Second, the isotropic elastic modulus is directly dependent on the GNP 
content in the epoxy matrix. The composite exhibits an increase of ~40% in the elastic 
modulus at an overall 𝑉𝑉𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺/𝑅𝑅𝑅𝑅𝑅𝑅 of 5%. This represents a significant enhancement in the 
material stiffness despite the small amount of GNP content.  

 

 
Figure 2.11: The elastic modulus of GNP/epoxy nanocomposite as a function of GNP 

volume fraction. 

2.3.2 CF/GNP/Epoxy Hybrid Composite 

The predicted properties of the GNP/epoxy nanocomposite were used as the matrix 
properties to generate a RUC of the CF/GNP/epoxy hybrid composite, as illustrated in 
Figures 2.10.d,e. Figure 2.12 shows a minor improvement in the axial elastic modulus of 
the hybrid composite with increases in 𝑉𝑉𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺/𝑅𝑅𝑅𝑅𝑅𝑅. This is due to the domination of the 
carbon fibers on the axial modulus. However, a larger increase in the transverse elastic 
modulus of the hybrid composite is observed as the overall 𝑉𝑉𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺/𝑅𝑅𝑅𝑅𝑅𝑅 increases, as shown 
in Figure 2.13. Generally, both the axial and the transverse elastic moduli predicted herein 
exhibit excellent agreement with the predictions from Hadden et al [46]. 
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Figure 2.12: Predicted axial elastic modulus for the hybrid composite as a function of 

GNP volume fraction. 
 

 
Figure 2.13: Predicted transverse elastic modulus for the hybrid composite as a function 

of GNP volume fraction. 
 
Figure 2.14 shows a plot of the normalized axial and transverse moduli for the hybrid 

composite at different values of overall 𝑉𝑉𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺/𝑅𝑅𝑅𝑅𝑅𝑅. Both normalized axial and transverse 
moduli predicted herein coincide with the computational results from Hadden et al. [46]. 
Even though the predicted axial modulus values fall beneath the mean values of the 
experimental results, they are still within the standard deviation. The predicted values 
indicate the insensitivity of the hybrid composite modulus to the GNP additives along the 
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axial direction due to the carbon fiber domination. However, the normalized transverse 
modulus exhibits greater sensitivity to the GNP content. The predicted transverse modulus 
is close to the experimental value at around 1% of the overall 𝑉𝑉𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺/𝑅𝑅𝑅𝑅𝑅𝑅, however, it is 
slightly lower for the overall 𝑉𝑉𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺/𝑅𝑅𝑅𝑅𝑅𝑅 above 1.5%. 

 

 
Figure 2.14: Normalized axial and transverse modulus for the hybrid composite as a 

function of GNP volume fraction. 

2.4 Conclusions 

This study has been mainly performed to address the potential for using ReaxFF with 
the Liu parameter set in MD modeling to predict the multiscale mechanical properties of 
GNP/epoxy nanocomposites and CF/GNP/epoxy hybrid composites. The results indicate 
that the predictions using ReaxFF agree with experiment. Also, it has been demonstrated 
that the GNP nanoparticle tends to attract the phenyl rings in the epoxy monomers, which 
results in alignment with the GNP surface due to noncovalent interaction. It has been 
demonstrated in this work that the agglomeration phenomenon of phenyl rings near the 
GNP surface can lead to an increase in the local mass density at the GNP/epoxy interface. 
Furthermore, the degree of noncovalent interaction decreases with increasing levels of 
crosslinking. Most importantly, it has been shown that MD modeling with a reactive force 
field (and an appropriate parameter set) can provide researchers with an accurate means to 
predict the mechanical behavior of hybrid and nanocomposite materials; and potentially be 
used in the future for predicting mechanical behavior under loading conditions that include 
large deformations and mechanical failure.  
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Chapter 3 
 

THE INFLUENCE OF GNP SIZE AND SURFACE 
FUNCTIONALIZATION ON THE MECHANICAL 

PERFORMANCE OF THEIR COMPOSITES  

This chapter proceeds to investigate the mechanical response of aerospace epoxy 
materials that are reinforced with different configurations of GNP. Particularly, the work 
in Chapter 3 focuses on studying the influence of GNP surface functionalization on the 
molecular structure and mechanical behavior of their nanocomposites using MD modeling 
with ReaxFF. As much as possible, realistic data of the chemical composition of the 
functional groups and their concentration are for the first time considered in this work to 
model the functionalized GNP nanoplatelets. Other paramount key processing parameters 
of such nanocomposites (namely the GNP dispersion, size, and content) are considered in 
the micromechanics analysis of the nanocomposite at the bulk level. A detailed description 
of the methodology used in modeling and predicting the mechanical properties of the 
nanocomposites is provided in this chapter. Results are compared with experiments to 
verify their validity and the performance of the multiscale modeling approach used in this 
study [67]1. 

3.1 Introduction 

GNP agglomeration, which is triggered by the noncovalent vdW forces and 𝜋𝜋-
conjugation, is an undesirable phenomenon because it hinders GNP dispersion in polymer 
matrices [37, 68-71]. Poor GNP dispersion can significantly limit the reinforcing function 
of GNP by reducing the interfacial contact surface area and providing easy slip planes 
within the reinforcement [72]. To resolve the agglomeration problem, different methods of 
mixing and stirring techniques have been used in preparing polymer-based nanocomposites 
with the aid of adding liquid solvents and sonication to attain GNP dispersion. Also, the 
chemical modification of GNP surface (functionalization) has been widely used for 
improving the GNP dispersion and their adhesion with the polymer matrices [7, 37, 59].  

Cha et al. [73] performed MD simulations to quantify the degree of dispersion of 
graphene nanosheets in ethylene glycol and water mediums. For pure graphene, there was 
a decrease in the degree of dispersion as the graphene content was increased. However, 
functionalized graphene additives maintained a higher degree of dispersion even for larger 
content within the hosting medium. That is, the presence of functional groups can 
effectively help to prevent the aggregation of graphene nanosheets within the hosting 
medium. In the same context, Karatasos and Kritikos [74] utilized MD simulations to 
characterize the molecular structure of graphene oxide (GO)/poly(acrylic acid) 

                                                 
1 Part of the material contained in this chapter has been previously published in the proceedings of the 
American Society for Composites: Thirty-fourth Technical Conference, 2019. Lancaster, PA: DEStech 
Publications, Inc. See Appendix C.4 for copyright agreement. 
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nanocomposite at the melt state. The nanocomposite static and dynamic properties, 
hydrogen bonding (H-bonding) network formation, and its thermal behavior were 
characterized at a wide range of temperatures. The main findings in this study refer to a 
moderate increase in the glass transition temperature when adding the GO flakes to the 
polymer matrix. The GO flakes are found to form oligomeric clusters in addition to single 
GO nanosheets dispersed within the polymer matrix. The polymer chains mobility is 
governed by the intramolecular and intermolecular H-bonding network formation in the 
system which is highly affected by the presence of the GO flakes and temperature change. 
Interfacial hydrogen bonds formation is responsible for the adsorption of polymer chains 
onto the GO surface. This produces an improvement in the interfacial adhesion and 
polymer chains confinement within the GO clusters. 

The method of Hummers (1958) [75] in preparing graphitic oxide has been widely used 
in the mass production of GNP in the form of graphene oxide (GO). In this method, the 
carbon-to-oxygen atomic ratio of the produced GO was reported to be within the range of 
2.1-2.9. Introducing oxygen groups to the bulk material (graphite) increases the spacing 
distance (d-spacing) and weakens the stacking between graphene layers. Hence, it becomes 
easy to separate the layers from each other to produce a single to a few-stacked layer(s) of 
GO by either mild sonication in water or organic solvents. The GO layers can be subjected 
then to a series of post-processing or material treatment such as heating or chemical 
reduction stages to produce single layers of reduced graphene oxide (rGO) [76]. Attaching 
highly reactive chemical groups, in addition to the oxygen groups, onto the GO surface can 
be also performed to produce functionalized graphene oxide (FGO). Both oxygen and 
functional groups are found to attain better GNP dispersion and introduce covalent bonding 
with the hosting matrix. Adding a small amount of polymer functionalized graphene can 
substantially improve the mechanical, thermal, electrical, optical, and magnetic properties 
of the nanocomposite [71]. 

The mechanical performance of chemically modified GNP is highly dependent on the 
type, size, and amount of the chemical groups attached to the GNP surface. In the context 
of that, many research studies have claimed that improved engineering properties of 
polymer-based nanocomposites can be obtained when reinforced with certain types of 
functionalized GNP. Fang et al. [77] experimentally described a process of constructing 
functionalized GNP with a hierarchically-structured and long-chain of aromatic amines to 
improve the interphase in a high-performance tough and strong nanocomposites. The 
results revealed a convenient adjustment between load transfer and nanofillers mobility, 
which is governed by the introduced covalent links between the GNP and the epoxy matrix. 
In addition, reinforcing the epoxy matrix with 0.6 wt% of amine-functionalized GNP 
resulted in a substantial improvement in the mechanical properties of the nanocomposite 
as its Young’s modulus increased by 95.6%, fracture toughness increased by 93.8%, and 
flexural strength increased by 91.5%. Su et al. [78] prepared aminated-reduced graphene 
oxide (NH2-rGO) nanosheets using all aqueous self-assembly method. GO nanosheets 
were first treated with Diethylenetriamine (DETDA) and then integrated into poly(2-
ethylhexyl acrylate) (P2EHA) to produce a highly stable colloid dispersion system of the 
nanocomposite. The produced functionalized graphene nanosheets exhibited a highly 
wrinkled structure. Also, there was an enhancement in the electrostatic interaction and 
improved adhesive property between the polymer matrix and the large functional aminated 
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groups. As a result, an improvement in the mechanical, thermal, and electrical properties 
of the nanocomposite was observed.  

An important observation regarding functionalized GNP using ammonia radicals refers 
to the partial restoration of the conjugate structure by donating electron density to the 
distorted aromatic rings in the GO [79]. Xiao et al. [80] used a facile impregnation method 
to anchoring H3PW12O40 on 3-aminopropyltriethoxysilane modified graphene oxide (GO-
NH2) which enhanced methyl orange (MO) absorption capacity onto the hybrid PW12/GO-
NH2 nanoplatelets. The enhanced interaction between MO and the hybrid nanoplatelets was 
attributed to the electrostatic attraction and the hydrogen-bonding. In their article, during 
graphite oxidation process to produce GO and then functionalization of GO with NH2 to 
produce NH2-rGO, Navaee et al. [81] reported that the d-spacing was increased from 3.34 
Å for graphite to 8.3 Å for GO and to 11.0 Å for NH2-rGO. This has been attributed to the 
presence of oxygen and amine groups in addition to the trapped water molecules between 
the GNP layers. Furthermore, they found that NH2-rGO has higher conductivity and more 
dispersibility than GO. Naebe et al. [82] performed an experimental study to prepare epoxy 
(EPON862)-based nanocomposites reinforced with thermally-rGO and with 
functionalized-rGO using organic carboxylic (-COOH) groups. The nanoscale surface 
roughness of the functionalized-rGO along with the attached organic (reactive) radicals 
provided a mechanical interlocking and interfacial covalent bonding which constrained 
polymer chains mobility. Furthermore, a uniform dispersion with a distinct interphase zone 
surrounding the functionalized-rGO nanoparticles was observed within the epoxy matrix. 
The reported results show that adding 0.1 wt% of the functionalized-rGO to the neat epoxy 
performs better than the thermally-rGO where the flexural strength increased by 22% 
versus 15% and the storage modulus increased by 18% versus 10%, respectively. Park et 
al. [83] reported a detailed experimental study to measure the influence of adding 
ammonia-treated GO on the mechanical properties of epoxy (EPON828)-based 
nanocomposite. Three different amounts of ammonia solution concentrations (14, 21, and 
28%) were used in the treatment process. The prepared reinforcement particles were 
chemically analyzed using Raman spectroscopy and X-ray photoelectron spectroscopy 
(XPS). While the surface element analysis revealed the elemental contents for C, O, and N 
in atomic percent (at%), the XPS spectra provided information about functional groups (C-
N-C, CONH, C-NH2) formed by ammonia treatment. The Raman spectra for the structural 
integrity of GO and aminated-GO was also reported according to the measured D-band to 
G-band (ID/IG) peak ratio which indicates a slight increase in the aminated-GO particles. 
The reported mechanical properties of the prepared nanocomposite samples indicate a 
remarkable improvement in the mechanical response for aminated-GO/epoxy and 
GO/epoxy samples over neat epoxy. While the tensile strength indicates an increase of 
59.4% for GO/epoxy, it indicates the best improvement by 120.4% for the 28% aminated-
GO/epoxy. However, the tensile strain indicates a decrease by 10% for GO/epoxy over 
neat epoxy, while it indicates the best improvement by 15% for the 28% aminated-
GO/epoxy. The tensile modulus indicates an increase of 70% for GO/epoxy over neat 
epoxy, while it indicates the best improvement by 100% for the 21% aminated-GO/epoxy 
over neat epoxy.  

Despite that the overall mechanical performance of polymer matrices can be improved 
by adding surface-functionalized GNP, the functionalized GNP itself can exhibit weaker 
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structural performance. Pei et al. [84] performed MD simulations to investigate the effect 
of hydrogen content (H-coverage) on the mechanical properties of hydrogen functionalized 
graphene. The MD simulations indicate a dramatic deterioration in the mechanical 
properties of the graphene nanosheet as the H-coverage was increased up to a saturation 
value of ~30%, beyond which a stable mechanical response was predicted. The larger 
degradation was predicted in the tensile strength and fracture strain with a maximum drop 
of ~65%. However, ~30% maximum degradation in Young's modulus was predicted at the 
30% of H-coverage. This dramatic drop in the mechanical properties was mainly attributed 
to the weak bonding structure of hydrogen functionalized graphene nanosheet. In other 
words, the chemical modification of graphene resulted in a local alteration of its strong sp2 
bonding structure into a weaker sp3 bonding structure. 

Among the several key processing parameters that can influence the mechanical 
response of polymer-based nanocomposites, Chong et al. [85] considered the nanofiller 
size and effective aspect ratio in their study. The use of different GNP configurations along 
with two different solvent agents in preparing the nanocomposites resulted in composite 
samples having a relatively wide range of GNP aspect ratio. The results referred to a 
general observation that GNPs with large aspect ratio exhibit better mechanical response, 
specifically, higher modulus and strain energy release rate during the fracture process. 
However, low fracture performance was observed for GNPs with sharp edges, even with a 
high aspect ratio. For samples with agglomerated nanofillers, there was a reduction in the 
effective aspect ratio of the GNPs due to the formation of graphene particulates. As a result, 
there was a reduction in the interfacial surface contact area and the stress transfer to the 
GNPs, which limited their stiffening effect. The fabrication of multifunctional polymer-
based nanocomposites with engineered properties is a challenging task [86]. The excessive 
mixing process used to obtain a well-dispersed nanofillers in the polymer matrix can 
greatly reduce the size and the effective aspect ratio of nanofillers as they can be chopped 
by the stirring blades. On the other hand, inefficient mixing techniques can lead to 
agglomeration in the nanofiller additives which is another source of reducing the effective 
aspect ratio of the reinforcements and many other undesirable issues. According to the 
experimental observations of Karevan et al. [86], the aspect ratio of exfoliated graphite 
nanoplatelets (xGnPTM) was decreased from 50 (as received xGnP) to 20 after 
incorporating xGnP in polypropylene (PP). Similarly, the aspect ratio for CNTs was also 
decreased from 800 to 200.      

Using MD modeling and micromechanics analysis, Chinkanjanarot et al. [57] studied 
the effect of GNP content, dispersion, functionalization, and aspect ratio on the thermal 
conductivity of cycloaliphatic epoxy (CE) matrix. The increase in GNP aspect ratio was 
found to positively affect the thermal conductivity of GNP/CE composite. Specifically, at 
4.0 wt% of single-layer GNP content, increasing the GNP aspect ratio from 50 to 1000 
resulted in a 2.66-fold increment in the nanocomposite thermal conductivity relative to the 
pure CE matrix. A similar trend was observed for improving the transverse (and slightly 
the axial) thermal conductivity of CF/GNP/CE hybrid composite with increasing the GNP 
aspect ratio. In part of their work (micromechanics analysis), Radue and Odegard [9] 
studied the effect of CNT aspect ratio on the mechanical properties of epoxy-based 
nanocomposites. A general observation refers to an improvement in the reinforcing effect 
with increasing the CNT aspect ratio up to 10,000, at which a close effect of using infinitely 
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long CNT was observed. At 5.0 wt% of CNT perfectly dispersed in epoxy matrix, an 
improvement of about 12% in Young’s modulus was observed as the aspect ratio increased 
from 100 to infinity.  

The assortment of GNPs according to the attached functional groups in addition to their 
effective aspect ratio opens the door for more key processing parameters which can be used 
to tailoring the engineering properties of polymer-based composites. Consequently, 
additional effort is required to optimize the overall structural behavior of such composite 
materials. It is believed that computational tools, along with experiments, can play a 
paramount role in developing and optimizing the properties of these composite materials. 
Looking at the literature, previous computational studies have not comprehensively 
investigated the effect of functionalization and GNP aspect ratio on bulk mechanical 
properties of epoxy-based nanocomposites. Considering that, the aim of this study is to 
develop a computational approach to model functionalized GNP/epoxy nanocomposites. 
Three different forms of GNP are considered: pristine (GNP), highly concentrated 
graphene oxide (GO), and functionalized graphene oxide (FGO). The adopted approach 
involves a multiscale analysis to predict bulk-level mechanical properties of the 
nanocomposites. For the nanoscale level, MD modeling has been used to study the 
topology of the nanoplatelets before and after functionalization. It has also been used to 
generate the nanocomposite unit cells and characterize the interphase region between 
GNP/GO/FGO and epoxy. The mass density profile has been determined at the interphase 
region in addition to predicting the effective mechanical properties for the three proposed 
nanocomposites at the nanoscale level. For the microscale analysis, the influence of the 
nanoplatelet functionality, aspect ratio, and its content on the mechanical properties of the 
nanocomposites at the bulk level has been established. The predicted mechanical properties 
were compared with experimental data available from the literature to verify the validity 
of the computational approach used in this work. 

3.2 Molecular Dynamics Modeling 

For the nanoscale computational work, the MD modeling procedure adopted in this 
study is based on the previous modeling scheme used in Chapter 2. Additional modeling 
details used to establish and characterize the functionalized GNP and their interphase with 
the hosting matrix are described in this chapter.  

3.2.1 Nanocomposite Constituents 

Three unique nanocomposites were considered in this study to address the 
functionalization effect on the mechanical properties of the material. Simulated epoxy unit 
cells reinforced with GNP, GO, and FGO were created using LAMMPS. The size of each 
MD model was carefully assigned to capture the properties of nanoplatelet-epoxy 
interphase region and avoid the epoxy bulk effect [46]. Five MD replicates for each 
nanocomposite sample were created to explore the possible variation in the obtained 
mechanical properties from each case-study. 
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3.2.1.1 Epoxy monomers 

The epoxy system EPON 828 (diglycidyl ether of bisphenol A, DGEBA) and the 
hardener EPIKURE curing Agent W (diethyltoluenediamine, DETDA) were modeled in 
this study. One EPON 828 molecule (49 atoms) and one DETDA molecule (31 atoms) 
were individually created (Figure 3.1) via the ChemDraw Professional software package, 
version: 15.0.0.106, PerkinElmer Informatics, Inc. The molecular structure was initially 
established using the OPLS-All Atom (OPLS-AA) force field [24] with a stoichiometric 
mixture ratio of two DGEBA molecules to one DETDA molecule. A single unit of the 
stoichiometric mixture (2:1) was simulated in a periodic MD box totaling 129 atoms. The 
mixture was then replicated 48 times to form a larger system comprising 144 monomers 
(96:48) with 6192 atoms. 

 

 
Figure 3.1: Molecular structures of epoxy monomers (EPON 828/DETDA). 

3.2.1.2 Graphene nanoplatelets (GNP/GO/FGO) 

The “lattice” command was used in a LAMMPS script to create a single layer of GNP. 
The lattice parameters for the hexagonal atomic structure of a pristine nanoplatelet of 
graphene were taken from Gray et al. [58]. A square-GNP-layer was created which includes 
836 carbon atoms with lateral dimensions of ~47.5 Å along the x-axis and ~47.7 Å along 
y-axis, as shown in Figure 3.2.a. For the GO and FGO nanoplatelets, the functional groups 
were randomly attached (crosslinked) to the top and bottom surfaces of the GNP layer. The 
chemical composition and quantitative atomic data for GO and aminated GO or A21-GO 
(which is referred to as FGO herein) were taken from the surface element analysis results 
of X-ray photoelectron spectroscopy (XPS) performed by Park et al. [83]. Note that the 
A21-GO represents GO nanoplatelets treated with ammonia solution of 21% concentration 
as reported by Park et al. Table 3.1 includes the elemental contents (at%) from which the 
GNP and functional groups atomic data were derived and used to model GO and FGO 
nanoplatelets which are shown in Figures 3.2.b,c. 

DGEBA

DETDA

Skeletal structures MD structures

Carbon       Oxygen       Hydrogen        Nitrogen
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Figure 3.2: Representative MD models of GNP, GO, and FGO nanoplatelets.  

 
 

 
Table 3.1: Elemental content (at%) and atomic data used to model GNP, GO, and FGO 

nanoplatelets. 
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Carbon (sp2)            Carbon (sp3)              Oxygen           Hydrogen           Nitrogen

Nanoplatelet GNP GO FGO 
Elemental 
contents 
(at%) [83] 

core level spectra, Cls --- 60.65 63.98 
core level spectra, Ols --- 39.35 31.67 
core level spectra, Nls --- --- 4.35 

Number of 
atoms used 
in MD 
modeling 

C atoms in the GNP lattice 836 836 825 
Oxygen 
groups 

Epoxide: -O- --- 271×1 207×1 
Hydroxyl: -OH --- 271×2 207×2 

Nitrogen 
groups 
content 

Amine: -NH2 --- --- 34×3 
Amide: -(O=C-NH2) --- --- 12×5 
Graphitic Nitrogen: -N- --- --- 11×1 

Total number of atoms 836 1649 1619 
sp3/sp2 ratio for the GNP lattice --- 0.973 0.798 
C:O ratio in the nanoplatelet --- 1.542 1.936 
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The MD model of GO shown in Figure 3.2.b was created according to the data 
presented in Table 3.1 and based on Lerf-Klinowski GO model [87]. The core level spectra 
of the oxygen content (Ols = 39.35 at%, Table 3.1) was assumed to be existed as 50% of 
epoxide (-O-) and 50% of hydroxyl (-OH) functional groups, as there is no detailed 
information about the chemical composition of the oxygens in the reported data. It is 
important to note that each oxygen group has a different effect on the GNP structure, as 
each epoxide oxygen atom forms two covalent bonds with two carbon atoms in the GNP, 
while the hydroxyl oxygen atom forms only one covalent bond with GNP. This means that 
epoxide groups have a greater detrimental effect on the robust sp2 structure of the GNP by 
turning it into a weak sp3 structure. In other words, the sp3/sp2 carbons ratio in the GNP 
oxidized with a specific amount of epoxide groups is double of that if the oxygens were 
presented in the hydroxyl form. The variation in functional group types that can exist on 
the GNP surface is generally classified based on their chemical composition, size, and 
molecular configuration. This variation can produce different levels of interfacial 
interaction of the functionalized GNP with the hosting polymer matrix [88, 89]. 

For the FGO MD model shown in Figure 3.2.c, the core level spectra of the oxygen 
content (Ols = 31.67 at%, Table 3.1) was assumed to exist as 50% of epoxide (-O-) and 
50% of hydroxyl (-OH) functional groups. The core level spectra of the nitrogen content 
(Nls = 4.35 at%, Table 3.1) was divided into; 59.1% of amine groups (-NH2), 20.8% of 
amide groups (O=C-NH2), and 20.1% of graphitic nitrogen (-N-). These values were taken 
from the curve fitting of the Nls spectra of aminated A21-GO performed by Park et al. [83]. 
For modeling simplicity, all the nitrogen content in the form (-N-) were assumed to exist 
as graphitic nitrogen which does not damage the hexagonal carbon rings in the GNP. The 
nitrogen doping process involved taking out 11 carbon atoms from the GNP lattice and 
replacing them with 11 nitrogen atoms. Both Pyrrolic-N and Pyridinic-N, as the other types 
of nitrogen-doped graphene, are found to cause structural defects (voids) in the graphene 
lattice. While Pyrrolic-N’s are found to exist within pentagon rings in the graphene lattice 
[90], Pyrazole-N’s are found to exist at the edges of the graphene lattice [91].  

All the GNP nanoplatelets were simulated with continuous lateral edges (periodic 
boundary conditions) and free of defect graphene lattice. Thus, the presence of carboxyl 
and carbonyl as functional groups in GO and FGO was ignored because they are more 
likely to exist with low concentrations at the edges and defected regions (open rings or 
voids) in the GNP lattice [16, 37]. Nevertheless, the chemical concentrations of these 
functional groups were not reported in the experimental work from Park et al. [83]. Five 
MD replicates for each nanoplatelet of the GNP, GO, and FGO were simulated to account 
for the possible variation in the predicted properties. Each MD replicate of the GO and 
FGO had a unique random distribution of the attached functional groups. However, 
chemical concentration and content for functional groups were preserved for all GO and 
FGO MD replicates.  

Both GO and FGO MD models shown in Figures 3.2.b,c exhibit a degree of wrinkling. 
This structural feature is mainly attributed to presence of the oxygen and functional groups 
on the GNP surface [38, 78]. Introducing oxygen/functional groups to the 
planar/unwrinkled structure of the graphene sheet can greatly disrupt its robust sp2 
structure. Functionalization degree can be used to specify the sp3/sp2 ratio, which is a 
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measure of the GNP purity (chemical integrity) and its structure robustness. Note that the 
lower the sp3/sp2 ratio, the more pristine and planar GNP can be obtained.  

To determine the functionalization effect on the GNP structural integrity, one sample 
of the three nanoplatelet types was subjected to a simulated uniaxial tensile simulation. 
Figure 3.3 shows a representative stress-strain response of GNP, GO, and FGO. Clearly, 
GNP exhibits the best mechanical response with a predicted elastic modulus of 1,264 GPa. 
Both FGO and GO exhibit a weaker mechanical response with predicted elastic moduli of 
386 and 119 GPa, respectively. Consequently, the nanoplatelets’ stiffness can be arranged 
according to their elastic moduli in the order: GNP≫FGO>GO. That is, the lower the 
sp3/sp2 ratio, the stiffer the GNP can be obtained. 
 

 
Figure 3.3: Representative uniaxial stress-strain response for GNP, GO, and FGO 

nanoplatelets. 

3.2.2 Nanoplatelets Dispersion 

The following MD simulations were performed in order to understand how the 
functional groups can help in improving the GNP dispersion. Three MD samples were 
modeled where each sample consists of five unique layers of GNP, GO, and FGO stacked 
together, respectively. Figure 3.4 shows the equilibrated MD models using ReaxFF with 
the size of the simulation box measures:  

 
(a) for the 5-layer-GNP MD model;      (47.7)x Å × (47.8)y Å × (16.5)z Å 
(b) for the 5-layer-GO MD model;        (42.0)x Å × (42.5)y Å × (54.3)z Å  
(c) for the 5-layer-FGO MD model;      (42.2)x Å × (41.1)y Å × (57.0)z Å  
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Figure 3.4: Equilibrated MD models of GNP, GO, and FGO 5-stacked nanoplatelets. 
 
Clearly, introducing the oxygen and functional groups to the bulk GNP resulted in an 

increase in the overall simulation box volume by 157.6% and 162.8% for GO and FGO, 
respectively. This volume increment is totally attributed to the increase in the size along 
the z-axis which surpasses the reduction in the lateral size caused by the waviness in GO 
and FGO nanoplatelets. 

 Table 3.2 includes the predicted distance between individual platelets (d-spacing) 
compared with experimental observation values available from the literature. The predicted 
d-spacing was calculated using two approaches: first, by roughly dividing the MD 
simulation box length along the z-axis (lz) by the number of the nanoplatelets (5 layers); 
and second, by obtaining the mean value of the measured distance between the center of 
mass for every two neighboring nanoplatelets. Generally, the predicted d-spacing values 
between GNP, GO, and FGO stacked nanoplatelets using both approaches indicate a good 
agreement with the experimental observations. The slight discrepancy in the predicted d-
spacing for GO and FGO stacked nanoplatelets with the experimental observation values 
can be attributed to the amount of the oxygen and the other functional groups presented in 
each case. It has been reported that the d-spacing in graphite oxide increases as the humidity 
level increases, which results in various d-spacing values ranging from 6 to 12 Å between 
the carbon nanoplatelets [92]. 
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 Table 3.2: The distance between stacked platelets (d-spacing) in GNP, GO, and FGO. 

 
The interaction energy between the stacked nanoplatelets was also investigated for the 

three MD samples. The interlayer interaction energy for each layer with the other four 
layers in the same sample was calculated by subtracting the isolated potential energy of the 
selected four layers from the overall potential energy including the fifth layer. Then, a mean 
value of the interlayer interaction energy was averaged over the five layers in each sample. 
It is important to note that the higher the negative value of the interlayer interaction energy, 
the stronger the attraction between the nanoplatelets. Figure 3.5 shows the level of the 
interlayer interaction energy for 1-layer with other 4-layers in the 5-layer-GNP, 5-layer-
GO, and 5-layer-FGO MD samples. Clearly, the interlayer interaction energy decreases 
with introducing the oxygen groups the GNP by ~15%. However, replacing some of the 
oxygen groups with amine and amide functional groups restores ~7.5% out of the 15% loss 
in the interlayer interaction energy. This can be attributed to the change in the pi-stacking 
effect between GNP layers which depends on the sp2 structure integrity (sp3/sp2 ratio), refer 
to Table 3.1. In addition, the variation in potential energy terms such as vdW, Coulomb, 
and charge equilibration energies produces different levels of interlayer interaction energy 
depending on the chemical composition of the stacked nanoplatelets. 

 

 
Figure 3.5: The interlayer interaction energy for the 5-layer-GNP, 5-layer-GO, and 5-

layer-FGO MD samples. 
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Consequently, the increase in the d-spacing value with the relatively low interlayer 
interaction energy are two factors which can facilitate the separation between GO and FGO 
layers using mild sonication in water or organic solvent mediums. Practically, the process 
of preparing nanocomposites involves two essential actions: first, the mixing of the filler 
nanoplatelets with the polymer resin under the stirring action; and second, the constituents' 
interaction which involves the formation of covalent bonds between functional groups and 
the polymer resin. These two factors can effectively prevent or alleviate the agglomeration 
effect between the nanoplatelets. Thus, GO and FGO nanoplatelets can provide better 
dispersion levels in polymer matrices in comparison to GNP. 

3.2.3 Nanocomposite MD Models 

Independent MD data files of unpolymerized epoxy monomers were combined with 
GNP, GO, and FGO MD data files to form MD unit cells of the nanocomposites. As five 
unique MD replicates of each nanoplatelet were already created, five MD replicates of 
GNP/, GO/, and FGO/epoxy nanocomposite unit cells were consequently created. Note 
that each MD replicate had its unique MD simulation settings to maintain independent 
replicates of each nanocomposite. All MD models were subjected to slow densifying (size 
reduction) simulation steps for 2.5 ns along the normal axis to the plane of the nanoplatelets 
to densify the epoxy monomers to the bulk level density (~1.2 g/cm3). To maintain a 
thermodynamically equilibrated molecular structure, the systems were subjected to 1 ns of 
MD simulation with the NVT (constant number of atoms, volume, and temperature) 
ensemble followed by a molecular minimization at every 1 fs of time step. The simulations 
involved the use of the Nose/Hoover thermostat with a temperature ramped down from 600 
to 300 K. For the three nanocomposite types, the considered amount of the epoxy system 
(6192 atoms) was selected to be adequate to capture the interphase region (~10 Å) 
measured from the nanoplatelet surface. 

The epoxy monomers in the nanocomposite MD models were subjected to a 
crosslinking simulation which was performed based on the approach presented in Chapter 
2. The polymerization process of epoxy monomers in all MD models was stabilized at a 
saturation degree of ~80% out of the overall possible crosslinking density. For the 
FGO/epoxy MD models, the crosslinking process was first randomly performed between 
the epoxide reactive radicals in the DGEBA monomers and the amine/amide functional 
groups in the FGO nanoplatelet. The first step of the crosslinking simulation was stabilized 
at a saturation degree of ~20% out of the overall possible crosslinking density. The next 
step of the crosslinking simulation was performed for the epoxy monomers which was 
stabilized at a saturation degree of ~60% out of the overall possible crosslinking density. 

Once the crosslinking simulations were completed, all MD models were equilibrated 
for 1 ns with 1 fs time steps. The equilibration simulations were performed using the NPT 
(constant number of atoms, pressure, and temperature) ensemble at 300 K with the 
Nose/Hoover anisotropic barostat to minimize residual stresses produced due the 
crosslinking process and to stabilize the molecular structure. Transition simulations from 
OPLS to a reactive force field (ReaxFF) with the parameterization of Liu et al. [26] were 
performed for the equilibrated MD models. This reactive force field has shown its validity 
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and potential in simulating epoxy systems and their nanocomposites [9, 10, 23]. The MD 
models were then equilibrated in ReaxFF for 1 ns using 0.1 fs time steps. The equilibration 
simulations involved the use of NPT ensemble at 300 K with the anisotropic Nose/Hoover 
barostat, followed by a molecular minimization at every 0.1 fs time step. It is important to 
note that all the nanoscale analysis and predictions were performed on the well equilibrated 
MD models with ReaxFF.  

Figure 3.6 shows representative MD models of GNP/, GO/, and FGO/epoxy 
nanocomposites with the molecular mass density distribution along the z-axis for each 
nanocomposite. The total number of atoms and overall molecular mass density for each 
MD model are given in Table 3.3. The simulation box size for each nanocomposite 
averaged over its five MD replicates is: 

 
(a) for the GNP/epoxy MD model; (47.55±0.03)x Å×(47.67±0.04)y Å×(29.68±0.30)z Å  
(b) for the GO/epoxy MD model;  (42.38±1.97)x Å×(43.41±0.83)y Å×(38.42±2.35)z Å 
(c) for the FGO/epoxy MD model; (43.39±1.16)x Å×(42.42±0.83)y Å×(38.51±1.16)z Å 

 

 
Figure 3.6: Representative MD models of the nanocomposites with their mass density 

distribution along z-coordinate. 
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Table 3.3: Details of the nanocomposite MD models. 

 
It is noteworthy to mention that the lateral size of the simulation box is governed by 

the lateral size of the nanoplatelets. The wrinkled topology of GO and FGO nanoplatelets 
resulted in a decrease in the lateral dimensions of their composite simulation boxes in 
comparison to the flat GNP/epoxy composite.  

The mass density distribution of the GNP/epoxy MD model exhibits a smooth profile 
reflected about z=0. There are four distinct regions that can be recognized from the mass 
density profile of the GNP/epoxy MD model: (i) the large spike at the center, which 
represents the molecular mass density of the flat GNP, (ii) the gap region between the GNP 
and epoxy which is caused by the repulsive portion of the vdW forces exerted by the GNP 
atoms on epoxy [9], (iii) the small spike next to the gap which represents a dense epoxy 
region (~2 g/cm3 at 4 Å from the GNP) adjacent and highly affected by the GNP followed 
by a density drop to ~1 g/cm3 and a gradual rise to the bulk density at ~10 Å from the center 
(it has been reported previously in Chapter 2 that most of the phenyl rings in the epoxy 
network were observed to be aligned with GNP surface at this region), and lastly (iv) the 
bulk epoxy region (~1.2 g/cm3) in which the interfacial interaction between GNP and epoxy 
diminishes with distance from the GNP. On the other hand, both GO/epoxy and 
FGO/epoxy nanocomposite models exhibit a similar trend in their molecular mass density 
profiles. Two distinct regions can be recognized from their molecular mass density profiles: 
(i) the interphase region which includes the nanoplatelet (GO or FGO) and the adjacent 
highly interacted epoxy region with a density of ~2 g/cm3 along z (-4:4) Å, which decreases 
with distance to the bulk density at ~10 Å from center, and (ii) the bulk epoxy region (~1.2 
g/cm3) in which the interfacial interaction between the nanoplatelet and epoxy diminishes 
with distance away from GO or FGO nanoplatelet. 

According to the density profile of the MD models shown in Figure 3.6, it can be 
inferred that both the GO and FGO provide better adhesion with the epoxy matrix, as no 
gaps were observed at the interfacial region. In addition, the wrinkling and surface 
roughness in the GO and FGO are valuable to improve the interlocking mechanism with 
the epoxy matrix. The nanoplatelets content in wt% and vol% averaged over the five MD 
replicates of the proposed nanocomposite MD models are included in Table 3.3. As the 
elemental content (at%) of each nanocomposite sample was unchanged over the five MD 
replicates, the nanoplatelet wt% remained constant over the replicates. However, the 
different distribution of the oxygen and functional groups in addition to the unique MD 
simulation settings for each model resulted in a slight variation in the nanoplatelet vol% 
over the MD replicates. Note the volume fraction of each nanoplatelet (vol%) was 
calculated using the 3D Voronoi tessellation method which will be discussed later in this 
chapter.   

MD model GNP/epoxy GO/epoxy FGO/epoxy 
Total number of atoms 7028 7841 7811 
Mass density (𝜌𝜌𝑀𝑀𝑀𝑀), g/cm3 1.27±0.01 1.42±0.01 1.38±0.01 
Nanoplatelet content (wt%) 19.58±0.00 31.53±0.00 29.52±0.00 
Nanoplatelet content (vol%) 11.36±0.09 19.16±0.24 18.15±0.17 
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3.2.4 Waviness Factor (WF) 

In most experimental observations of GNP/polymer nanocomposites, GNPs exhibit a 
wrinkled or wavy morphology within polymer matrices. The GNPs morphology is 
governed by several factors. The production of GNPs in the form of a few layers of 
graphene nanosheets stacked together with a relatively large aspect ratio can exhibit a large 
amount of waviness. The low bending stiffness of the GNPs is another factor to induce its 
curled morphology. The integrity of the planar sp2 structure of the GNPs can also be 
affected by the presence of vacancies, defects, and functional groups, which can promote 
the waviness degree [38, 93]. It has been reported that wrinkled GNP surface can provide 
better interlocking mechanism and strong interfacial interaction with the hosting matrix 
[41, 94]. Therefore, studying the GNPs morphology is of a great importance as it has been 
found to improve the mechanical properties of polymer-based nanocomposites. 

The waviness (wrinkling) factor (WF) in GNP has been defined as the ratio of direct 
distance between the two ends of a wrinkled GNP (wrinkled length, 𝐿𝐿𝑤𝑤) to the original 
(actual) length of the unwrinkled GNP (actual length, 𝐿𝐿𝑎𝑎) [93]. In light of that, the WF of 
the graphene nanoplatelets within the epoxy matrix for all MD models simulated in this 
work were calculated. It is important to note that the original length of the GNP was 
considered to be as lateral length (47.60 Å along x-axis, and 47.65 Å along y-axis) of an 
equilibrated planar GNP morphology using ReaxFF. Table 3.4 includes the waviness 
factors along the x-axis (WFx) and y-axis (WFy) calculated for the graphene nanoplatelets 
in all replicates of GO/epoxy and FGO/epoxy MD models. The overall WF is calculated 
as the mean value of the averaged values over WFx and WFy. Noteworthy to mention that 
all GNPs exhibit an overall WF of ~1 which indicates the flat GNP morphology in the 
GNP/epoxy MD models, refer to Figure 3.6.a. However, both GO and FGO exhibit an 
overall WF of (~0.9) which indicates ~10% reduction in the lateral dimensions caused by 
the wrinkled morphology of the nanoplatelets, refer to Figures 3.6.b,c. 

Table 3.4: Waviness factor of the nanoplatelets 
 
 
 
 
 
 
 
 
 
 
 
 

Nanocomposite 
MD model 

Waviness Factor (WF)= 𝑳𝑳𝒘𝒘 𝑳𝑳𝒂𝒂⁄  
GO/epoxy FGO/epoxy 

WFx WFy WFx WFy 
Model_01 0.875 0.880 0.956 0.915 
Model_02 0.954 0.913 0.902 0.874 
Model_03 0.889 0.918 0.884 0.911 
Model_04 0.896 0.900 0.918 0.874 
Model_05 0.872 0.934 0.903 0.906 
Average 0.897 0.909 0.912 0.896 
Overall WF 0.903 0.904 
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3.2.5 Weight and Volume Fraction of the Nanoplatelets 

Practically, the properties of nanocomposites are evaluated based on the nanofiller 
content used to reinforce the polymer matrix. The nanofiller content can be represented by 
either its weight percentage (wt%) or its volume percentage (vol%) relative to the overall 
weight or volume of the nanocomposite, respectively. The vol% can also be referred to as 
the volume fraction (𝑉𝑉𝑉𝑉). The design criterion of nanocomposites stands on how much the 
material properties are improved with the lowest amount of the reinforcing nanofiller 
material. However, an excessive amount of the nanofiller material can produce a 
detrimental effect on the nanocomposite such as increasing its weight and viscosity. In 
addition, the reinforcing purpose can be highly restricted by the agglomeration tendency 
especially with large amounts of nanofillers. Thus, it is necessary to consider that when 
investigating the engineering properties of the nanocomposites. 

 In this work, both wt% and vol% were evaluated for the GNP, GO, and FGO 
nanoplatelets within their nanocomposite MD models. For the wt% evaluation, a simple 
LAMMPS script was performed on each MD model to obtain the ratio of the partial 
molecular weight of the nanoplatelet to the overall molecular weight of the nanocomposite 
MD model. The “group” command in LAMMPS was utilized to specify the atom types 
which are used to determine the partial weight for each nanoplatelet. For the vol% 
evaluation, the process is relatively complicated because of the overlapped volume 
between atoms, in addition to the possibility of voids presence in the nanocomposite 
molecular network. An acceptable estimation can be made for the GNP vol% (𝑉𝑉𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺) 
utilizing the MD simulation box volume and its mass density distribution shown in Figure 
3.6.a, as it is rather possible to estimate the planar GNP volume. However, this task is not 
applicable for the wrinkled GO and FGO nanoplatelets. Fortunately, the “compute 
voronoi/atom” LAMMPS command introduces an effective solution for estimating the 
vol% despite the atomic volume calculation process neglects the presence of voids. 
Practically, the voids vol% (𝑉𝑉𝑉𝑉𝑣𝑣𝑒𝑒𝑖𝑖𝑣𝑣) can be neglected as it is very small for a well processed 
and degassed sample. On the other hand, the visual snapshot of atoms in an MD model 
using OVITO is virtual and the actual physical volume of an atom is determined by its 
vdW radius. Mathematically, the 3D Voronoi tessellation method, which was originally 
proposed by Gregory Voronoi (1908) [95], is based on establishing a set of space vectors 
out of the position of each atom which is accounted for the nearest neighbor atoms. These 
vectors are used to generate a 3D polygon region which represents the atom volume within 
the atomic system.  

Figure 3.7 shows representative samples of GNP/, GO/, and FGO/epoxy MD models 
analyzed using the 3D Voronoi tessellation. The atoms (white beads) and the red-wire-
mesh were generated using the open source voro++ software library for the computation 
of the Voronoi tessellation [96], while the images were rendered using the POV-Ray 
(Persistence of Vision Raytracer) software package. Clearly, the overall volume mesh for 
each MD model is assembled out of the discretized volume cells of the atoms in the system. 
This method is powerful in assigning the nanoplatelet partial volume despite its wrinkled 
structure. The nanoplatelets wt% and vol% averaged over the five MD replicates of the 
proposed nanocomposites are given above in Table 3.3.  
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Figure 3.7: The 3D Voronoi tessellation of GNP/, GO/, and FGO/epoxy nanocomposite 
MD models, the red line mesh represents the Voronoi cells generated for each atom 

(white beads). 

3.2.6 Interfacial Interaction Energy (IIE) 

Based on the concept of 𝐼𝐼𝐼𝐼𝐸𝐸, which is described in Chapter 2, the interfacial interaction 
between each of the GNP, GO, and FGO nanoplatelets and the hosting matrix 
were evaluated using Equation 2.1, which can be restated in the following general form:  

𝐼𝐼𝐼𝐼𝐸𝐸 = 𝑃𝑃𝐸𝐸𝑀𝑀𝑀𝑀 − 𝑃𝑃𝐸𝐸𝐺𝐺𝐺𝐺 − 𝑃𝑃𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑥𝑥𝑦𝑦 (3.1) 

Comparing Equation 3.1 with Equation 2.1, 𝑃𝑃𝐸𝐸𝐺𝐺𝐺𝐺 is the isolated potential energy for 
any type of the reinforcing nanoplatelets. Figure 3.8 shows the 𝐼𝐼𝐼𝐼𝐸𝐸 levels evaluated for the 
current GNP/, GO/, and FGO/epoxy MD models in addition to the 𝐼𝐼𝐼𝐼𝐸𝐸 for the 4-layer 
GNP/epoxy (4GNP/epoxy) nanocomposite which is modeled previously in Chapter 2. The 
4GNP/epoxy MD sample was modeled to account for the GNP agglomeration effect on the 
predicted mechanical properties of the nanocomposite. It is important to note that the 𝐼𝐼𝐼𝐼𝐸𝐸 
for each nanocomposite type was averaged over its five MD replicates which were well 
equilibrated with ReaxFF. In addition, the higher the negative 𝐼𝐼𝐼𝐼𝐸𝐸 magnitude is, the 
stronger the nanoplatelet-epoxy interaction.  

Clearly, the FGO/epoxy MD model with -9,356 kcal/mole exhibits the highest 𝐼𝐼𝐼𝐼𝐸𝐸 
among the other nanocomposites. The 𝐼𝐼𝐼𝐼𝐸𝐸 of GO/epoxy MD model with -4,381 kcal/mole 
is in the second place. However, both GNP/epoxy and 4GNP/epoxy exhibit a much lower 
𝐼𝐼𝐼𝐼𝐸𝐸 of -1389 and -992 kcal/mole, respectively. Hence, the 𝐼𝐼𝐼𝐼𝐸𝐸 of FGO/epoxy 
nanocomposite surpasses the GO/, GNP/, and 4GNP/epoxy nanocomposites by 113.6%, 
573.6%, and 843.2%, respectively. However, the 𝐼𝐼𝐼𝐼𝐸𝐸 of GO/epoxy nanocomposite 
surpasses the GNP/epoxy and 4GNP/epoxy nanocomposites by 215.4%, and 341.6%, 
respectively. Whereas, the 𝐼𝐼𝐼𝐼𝐸𝐸 of GNP/epoxy nanocomposite exceeds the 𝐼𝐼𝐼𝐼𝐸𝐸 of 
4GNP/epoxy nanocomposite by 40%, which can be attributed to the additional epoxy-
epoxy interaction energy term across the single layer of GNP.  
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Accordingly, the presence of functional and/or oxygen groups on the GNP surface 
resulted in a significant improvement in the 𝐼𝐼𝐼𝐼𝐸𝐸 with the hosting matrix. That is, the 
attraction or adhesion between GNP and epoxy matrix can be greatly enhanced by 
introducing functional groups to the GNP surface. These functional groups provide a strong 
interfacial covalent bonding between the nanoplatelet and the epoxy matrix. The major 
contribution to 𝐼𝐼𝐼𝐼𝐸𝐸 in FGO/epoxy can be attributed to the 20% of crosslinking density 
(covalent bonds) between the amine/amide functional groups and the epoxy matrix. 
Additional contribution to the 𝐼𝐼𝐼𝐼𝐸𝐸 in FGO/epoxy can be attributed to the interfacial H-
bonding and Coulomb energy. However, the H-bonding and Coulomb energy represent the 
major contribution to the 𝐼𝐼𝐼𝐼𝐸𝐸 in GO/epoxy. 

 

 
Figure 3.8: The interfacial interaction energy between epoxy matrix and 4GNP, GNP, 

GO, and FGO nanoplatelets. 

3.2.7 The Effective Mechanical Properties (MD Prediction) 

The MD modeling procedure used herein is based on that described in Chapter 2 to 
predict the effective mechanical properties of 4GNP/epoxy MD model. The well-
equilibrated MD models in ReaxFF were subjected to six deformation MD simulations. 
Each of the five MD replicates of GNP/, GO/, and FGO/epoxy nanocomposites was 
subjected to two tensile strain simulations along the x- and y-directions to predict the in-
plane elastic modulus [𝐸𝐸𝑖𝑖𝑒𝑒 = (𝐸𝐸𝑥𝑥 + 𝐸𝐸𝑦𝑦)/2] and Poisson’s ratio[𝜈𝜈𝑖𝑖𝑒𝑒 = (𝜈𝜈𝑥𝑥𝑦𝑦 + 𝜈𝜈𝑦𝑦𝑥𝑥)/2]. 
However, the tensile strain simulations along the z-direction were used to predict the out-
of-plane elastic modulus [𝐸𝐸𝑒𝑒𝑒𝑒 = 𝐸𝐸𝑧𝑧] and Poisson’s ratio [𝜈𝜈𝑒𝑒𝑒𝑒 = (𝜈𝜈𝑧𝑧𝑥𝑥 + 𝜈𝜈𝑧𝑧𝑦𝑦)/2]. To predict 
the shear moduli, three shear strain simulations in the xy-, xz-, and yz-planes were 
performed on each MD sample. While the deformation simulations in xy-plane were used 
to predict the in-plane shear modulus [𝐺𝐺𝑖𝑖𝑒𝑒 = 𝐺𝐺𝑥𝑥𝑦𝑦], the deformation simulations in xz- and 
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yz-plane were used to predict the out-of-plane shear modulus [𝐺𝐺𝑒𝑒𝑒𝑒 = (𝐺𝐺𝑥𝑥𝑧𝑧 + 𝐺𝐺𝑦𝑦𝑧𝑧)/2]. 
Consequently, 30 MD deformation simulations were performed on the replicates of each 
nanocomposite which are totaled with 90 MD deformation simulations for the three 
nanocomposite types. 

For the axial tensile strain simulations, the NPT ensemble at 300 K with the 
Nose/Hoover barostat was utilized to maintain the lateral surfaces at one-atmospheric 
pressure. These simulation settings were imposed to account for the Poisson contractions. 
However, the shear strain simulations were performed with the NVT ensemble at 300 K. 
Table 3.5 includes the predicted mechanical properties for the three nanocomposite MD 
models (localized interphase regions) simulated herein. The effective mechanical 
properties were averaged over the five MD replicates providing the corresponding standard 
deviations as the prediction uncertainties. All the deformation simulations were carried out 
over a total simulation time of 0.5 ns using 0.1 fs time steps and a strain rate of 1×108 s-1 
which resulted in a maximum engineering strain of 5%. 

 
Table 3.5: The predicted effective mechanical properties of the GNP/, GO/, and 

FGO/epoxy nanocomposite MD models. 

3.3 Micromechanics Modeling 

The micromechanics modeling procedure used herein is based on that presented 
previously in Chapter 2 with some modification to account for the nanoplatelet aspect ratio. 
The multiscale modeling workflow is shown in Figure 3.9, which illustrates the continuum-
level steps to predict the mechanical properties of the bulk nanocomposites. The 
MAC/GMC 4.0 RUC (ARCHID=1) shown in Figure 3.9.b contains 8 discretized subcells. 
One of the subcells was used to incorporate the predicted mechanical properties given in 
Table 3.5 for the MD model shown in Figure 3.9.a as the fiber subcell. However, bulk 
epoxy properties were incorporated in the other seven subcells. The bulk DGEBA-DETDA 
epoxy properties were taken from Qi et al. [97] in which the experimental elastic modulus 
was reported to be 2.71 ±0.11 GPa. Generating this RUC is essential to control the required 
nanoplatelet content (vol% or wt%) and its aspect ratio within the epoxy matrix [9, 57]. 
For the nanoplatelet content, it has been shown previously in Chapter 2 that the overall 
volume fraction of the nanoplatelet within epoxy matrix (𝑉𝑉𝑉𝑉𝐺𝐺𝐺𝐺/𝑅𝑅𝑅𝑅𝑅𝑅) can be evaluated using 
the following expression: 

 𝑉𝑉𝑉𝑉𝐺𝐺𝐺𝐺/𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑉𝑉𝑉𝑉𝐺𝐺𝐺𝐺/𝑀𝑀𝑀𝑀 ×  𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀/𝑅𝑅𝑅𝑅𝑅𝑅  (3.2) 

Mechanical properties GNP/epoxy GO/epoxy FGO/epoxy 
In-plane elastic modulus (𝐸𝐸𝑖𝑖𝑒𝑒), GPa 127.5±1.6 13.7±2.3 14.1±2.2 
Out-of-plane elastic modulus (𝐸𝐸𝑒𝑒𝑒𝑒), GPa 5.1±0.5 3.8±0.9 4.2±0.5 
In-plane shear modulus (𝐺𝐺𝑖𝑖𝑒𝑒), GPa 30.1±0.9 7.7±1.1 8.3±0.8 
Out-of-plane shear modulus (𝐺𝐺𝑒𝑒𝑒𝑒), GPa 0.073±0.021 1.201±0.214 1.498±0.239 
In-plane Poisson’s ratio (𝜈𝜈𝑖𝑖𝑒𝑒) 0.964±0.003 0.080±0.021 0.071±0.043 
Out-of-plane Poisson’s ratio (𝜈𝜈𝑒𝑒𝑒𝑒) 0.020±0.007 0.321±0.067 0.267±0.032 
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where 𝑉𝑉𝑉𝑉𝐺𝐺𝐺𝐺/𝑀𝑀𝑀𝑀 represents the GNP, GO, or FGO volume fraction within the MD model 
which is given as vol% in Table 3.3, and 𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀/𝑅𝑅𝑅𝑅𝑅𝑅 represents the volume fraction of the 
MD model within the RUC which can be adjusted in the MAC/GMC 4.0 script according 
to the required amount of the reinforcing nanoplatelets. 
 

 
Figure 3.9: The multiscale modeling workflow of bulk nanoplatelet/epoxy 

nanocomposite. 
 
A similar approach can be used to specify the nanoplatelet wt% within the epoxy matrix 

(𝑤𝑤𝑤𝑤𝐺𝐺𝐺𝐺/𝑅𝑅𝑅𝑅𝑅𝑅) according to the following expression: 

 𝑤𝑤𝑤𝑤𝐺𝐺𝐺𝐺/𝑅𝑅𝑅𝑅𝑅𝑅% = 𝑤𝑤𝑤𝑤𝐺𝐺𝐺𝐺/𝑀𝑀𝑀𝑀% × 𝑤𝑤𝑤𝑤𝑀𝑀𝑀𝑀/𝑅𝑅𝑅𝑅𝑅𝑅% (3.3) 

where 𝑤𝑤𝑤𝑤𝐺𝐺𝐺𝐺/𝑀𝑀𝑀𝑀% represents the weight percentage of GNP, GO, or FGO within the MD 
model which is given as wt% in Table 3.3, and 𝑤𝑤𝑤𝑤𝑀𝑀𝑀𝑀/𝑅𝑅𝑅𝑅𝑅𝑅% represents the weight 
percentage of the MD model within the RUC which can be evaluated using the following 
expression: 

 𝑤𝑤𝑤𝑤𝑀𝑀𝑀𝑀/𝑅𝑅𝑅𝑅𝑅𝑅% =
𝜌𝜌𝑀𝑀𝐷𝐷 × 𝑉𝑉𝑉𝑉𝑀𝑀𝐷𝐷/𝑅𝑅𝑈𝑈𝑅𝑅 

𝜌𝜌𝑀𝑀𝐷𝐷 × 𝑉𝑉𝑉𝑉𝑀𝑀𝐷𝐷/𝑅𝑅𝑈𝑈𝑅𝑅 + 𝜌𝜌𝐵𝐵 𝑉𝑉𝑉𝑉𝐵𝐵/𝑅𝑅𝑈𝑈𝑅𝑅
× 100% (3.4) 
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where 𝜌𝜌𝑀𝑀𝑀𝑀 and 𝜌𝜌𝐵𝐵 are the molecular mass density of the MD model and bulk epoxy, 
respectively. The values of 𝜌𝜌𝑀𝑀𝑀𝑀 for MD models are given in Table 3.3, while the 𝜌𝜌𝐵𝐵 is 
considered to be 1.2 g/cm3 as the typical mass density of the bulk epoxy system used in this 
work. The bulk epoxy volume fraction within the RUC (𝑉𝑉𝑉𝑉𝐵𝐵 𝑅𝑅𝑅𝑅𝑅𝑅⁄ ) can be substituted as: 

 𝑉𝑉𝑉𝑉𝐵𝐵 𝑅𝑅𝑅𝑅𝑅𝑅⁄ =  1 − 𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀/𝑅𝑅𝑅𝑅𝑅𝑅  (3.5) 

With respect to the nanoplatelet aspect ratio (𝑎𝑎𝐺𝐺𝐺𝐺), it can be evaluated using the 
following expressions: 

 𝑎𝑎𝐺𝐺𝐺𝐺 = 𝑙𝑙 𝑤𝑤𝐺𝐺𝐺𝐺⁄   (3.6) 

where 𝑙𝑙 and 𝑤𝑤𝐺𝐺𝐺𝐺 are the length and the thickness of the nanoplatelet, respectively. For the 
fiber subcell in the RUC, the aspect ratio of the nanocomposite MD model as the fiber 
subcell (𝑎𝑎𝑀𝑀𝑀𝑀) can be calculated using the following expression; 

 𝑎𝑎𝑀𝑀𝑀𝑀 = 𝑙𝑙 𝑤𝑤𝑀𝑀𝑀𝑀⁄   (3.7) 

where 𝑙𝑙 and 𝑤𝑤𝑀𝑀𝑀𝑀 are the length and the thickness of the MD model, respectively. According 
to the RUC settings, the MD model length 𝑙𝑙 is substituted as the fiber length while the MD 
model thickness 𝑤𝑤𝑀𝑀𝑀𝑀 is substituted as the fiber diameter. Rearranging Equation 3.6 for 𝑙𝑙, 
and substitute the value of 𝑙𝑙 in Equation 3.7 results in the following expression for 𝑎𝑎𝑀𝑀𝑀𝑀: 

 𝑎𝑎𝑀𝑀𝑀𝑀 = 𝑎𝑎𝑁𝑁𝑃𝑃 × 𝑤𝑤𝑁𝑁𝑃𝑃 
 𝑤𝑤𝑀𝑀𝐷𝐷

=  𝑎𝑎𝐺𝐺𝐺𝐺  × 𝑤𝑤𝑁𝑁𝑃𝑃 
𝑤𝑤𝑀𝑀𝐷𝐷

    (3.8) 

given that; 

  𝑉𝑉𝑉𝑉𝐺𝐺𝐺𝐺/𝑀𝑀𝑀𝑀 = 𝑤𝑤𝑁𝑁𝑃𝑃 ×𝑙𝑙×ℎ
𝑤𝑤𝑀𝑀𝐷𝐷×𝑙𝑙×ℎ = 𝑤𝑤𝑁𝑁𝑃𝑃 

𝑤𝑤𝑀𝑀𝐷𝐷
    (3.9) 

hence, Equation 3.8 can be rewritten as: 

 𝑎𝑎𝑀𝑀𝑀𝑀 = 𝑎𝑎𝐺𝐺𝐺𝐺  ×  𝑉𝑉𝑉𝑉𝐺𝐺𝐺𝐺/𝑀𝑀𝑀𝑀 (3.10) 

Equations 3.2-3.10 provide the flexibility to predict the effective mechanical properties 
of the nanocomposites at different nanoplatelets content and aspect ratio values without the 
need for running additional MD simulations. After running the MAC/GMC script, utilizing 
the RUC settings illustrated in Figure 3.9.b, the predicted mechanical properties of the 
nanocomposite were further processed using Christensen and Waals equations [64]. These 
equations were used to predict the effective homogenized/isotropic mechanical properties 
of the nanocomposites with randomly orientated and perfectly dispersed nanoplatelets in 
epoxy matrix, as shown in Figure 3.9.c. The predictions at this point represent the 
mechanical properties of the bulk nanoplatelet/epoxy nanocomposites.  
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3.4 Results and Discussions 

The influence of the nanoplatelets dispersion, functionalization, content, and aspect 
ratio on the predicted mechanical properties of the nanocomposites at room temperature is 
described and discussed in this section. The nanoplatelet/epoxy nanocomposite predictions 
are divided into two levels; first, the localized interphase MD predictions (nanoscale), and 
second, the bulk nanocomposite predictions (microscale). The bulk nanocomposite 
predictions are validated with experiments from the literature. 

3.4.1 Nanoplatelet/Epoxy MD Predictions (Nanoscale) 

The effective mechanical properties of the localized interphase regions of 
nanoplatelet/epoxy MD models shown in Figure 3.6 were predicted and are given in Table 
3.5. In general, introducing the functional and/or large amount of oxygen groups to the 
GNP structure produced a significant drop in the in-plane elastic (𝐸𝐸𝑖𝑖𝑒𝑒) and shear (𝐺𝐺𝑖𝑖𝑒𝑒) 
moduli. Particularly, GO/epoxy exhibits -89.25% and -74.42% reduction in the 𝐸𝐸𝑖𝑖𝑒𝑒 and 
𝐺𝐺𝑖𝑖𝑒𝑒, respectively. Whereas, FGO/epoxy exhibits -88.94% and -72.43% reduction in the 𝐸𝐸𝑖𝑖𝑒𝑒 
and 𝐺𝐺𝑖𝑖𝑒𝑒, respectively. A slight drop can be also observed in the out-of-plane elastic 
modulus (𝐸𝐸𝑒𝑒𝑒𝑒) with -25.49% for the GO/epoxy and -17.65% for the FGO/epoxy.  

The designated drop in 𝐸𝐸𝑖𝑖𝑒𝑒, 𝐸𝐸𝑒𝑒𝑒𝑒, and 𝐺𝐺𝑖𝑖𝑒𝑒 is mainly attributed to the degradation in the 
robust sp2 structure of the GNP due to the surface functionalization effect (refer to Figure 
3.3). On the other hand, surface functionalization produced a tremendous improvement in 
the out-of-plane shear modulus (𝐺𝐺𝑒𝑒𝑒𝑒) by 15.45 times for the GO/epoxy and by 19.52 times 
for the FGO/epoxy. This improvement in the 𝐺𝐺𝑒𝑒𝑒𝑒 is mostly attributed to the rough and 
wrinkled surfaces of FGO and GO nanoplatelets (refer to Figure 3.2 and Figure 3.6) which 
triggered the interlocking mechanism with the hosting matrix. Better improvement in the 
interfacial adhesion can be particularly obtained in FGO/epoxy as the FGO is covalently 
bonded with the hosting matrix. However, the low 𝐺𝐺𝑒𝑒𝑒𝑒 of GNP/epoxy is governed by the 
low noncovalent interfacial interaction between the planar GNP surface and epoxy.  

For the Poisson contractions, the in-plane Poisson’s ratio (𝜈𝜈𝑖𝑖𝑒𝑒) value for the 
functionalized GNP/epoxy nanocomposites indicated a significant decrease. In contrast, 
the out-of-plane Poisson’s ratio (𝜈𝜈𝑒𝑒𝑒𝑒) involved a large increase. This lateral contraction 
behavior can be attributed to the alteration in the GNP sp3/sp2 ratio and wrinkling effect. 
Generally, the FGO/epoxy exhibits a higher prediction of the localized moduli relative to 
the GO/epoxy nanocomposite. That is, the nanocomposite localized interphase stiffness is 
highly governed by the stiffness of the nanoplatelet which asserts the order 
GNP≫FGO>GO.  

3.4.2 Nanoplatelet/Epoxy Bulk Predictions (Microscale) 

In fact, the process of comparing the predicted mechanical properties of 
nanocomposites with experiments involves some challenges. This is because of the wide 
range of factors that can affect the nanocomposite molecular structure and hence its 
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mechanical response. The size and number of layers in the GNP, integrity of the GNP 
lattice structure, the GNP surface functionalization, and the chemical composition of 
residual solvent solutions are the most important factors which can greatly affect the 
material response at both molecular and bulk scales. Tackling all of these factors requires 
significant modeling effort as the MD modeling can be used to simulate a particular case 
study of nanocomposites.  

In this work, the bulk GNP/epoxy nanocomposite represents an ideal case of pristine 
and planar single layers of graphene perfectly dispersed in the epoxy matrix. However, 
GO/epoxy and FGO/epoxy involved introducing high levels of chemical elements to the 
GNP. In other words, GO and FGO nanocomposites involved changing the chemical 
composition of the GNP, yet keeping the same level of dispersion. The 4GNP/epoxy 
nanocomposite, which is modeled previously in Chapter 2, involved modelling the GNP 
with a certain level of dispersion/agglomeration. Fortunately, the modeling scheme and 
computational tools used in this study provide the ability to manipulate and control most 
of the aforementioned factors. The RUC settings shown in Figure 3.9.b tolerate the 
prediction of the mechanical properties for bulk nanocomposites at different nanoplatelets 
contents and aspect ratios. However, there are still some other important factors, such as 
the variation in the chemical composition of the functionalized GNP and the nanoplatelets 
dispersion levels, which can produce incomparable deviations with experiments. Hence, 
the aim of this section is to validate the current modeling approach under the consideration 
of the above discussion. 

Figure 3.10 shows the predicted bulk elastic modulus for each nanocomposite type at 
different nanoplatelets content (wt%) at aspect ratio 6 (dashed lines), and 100 (sold lines). 
The unnormalized predicted moduli (Figure 3.10.a) are significantly higher than the 
experimental values from Park et al. [83] despite that the GO and FGO nanoplatelets were 
modeled according to the reported experimental data in their work (Table 3.1). The 
difference is attributed to the low magnitude of the epoxy matrix elastic modulus in the 
experiment which was reported as 1.0±0.4 GPa. This modulus value is much lower than 
the typical value of DGEBA-DETDA epoxy reported in the literature [85, 97]. In addition, 
the number of layers in the reinforcing nanoplatelets and their size (aspect ratio) is 
unreported in their work. However, the experimental elastic modulus of GNP-
COOH/epoxy (and GNP-O2/epoxy which is not reported herein as its mechanical 
properties are identical to the GNP-COOH/epoxy) from Chong et al. [85] indicates a good 
agreement with the current predictions.  

The normalized composite elastic modulus (𝐸𝐸𝑐𝑐) by the matrix elastic modulus (𝐸𝐸𝑚𝑚) 
shown in Figures 3.10.b,c indicates excellent agreement between the current predictions 
and the experimental data provided by Chong et al. Note that the experimental aspect ratio 
of GNP-COOH nanoplatelet sample measured using field emission scanning electron 
microscopy (FESEM) was reported to be 85, while the manufacturer value is within 6-100. 
In general, all the predicted moduli fall within the standard deviation of the experimental 
modulus from Chong et al. at 1.0 wt% of the nanoplatelets content. However, the 
experimental mean value is slightly lower than the predicted moduli for GNP/epoxy 
nanocomposite which represents the ideal case using intact GNP structure with perfect 
dispersion in matrix. The experimental mean value of the modulus is also close the 
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predicted modulus values of 4GNP/, FGO/, and GO/epoxy nanocomposites with 100 
aspect ratio, and slightly higher than those with 6 aspect ratio (Figure 3.10.c). 

 

 
Figure 3.10: Elastic modulus predicted for various nanoplatelets content and compared 
with experiment, (a) unnormalized modulus, (b) normalized modulus, and (c) zoom in 

capture at the modulus data point of GNP-COOH/epoxy. 
 
Zaman et al. [7] performed an experimental study to investigate the mechanical 

response of an epoxy matrix reinforced with graphene nanoplatelets (GP) and surface-
modified graphene nanoplatelets (m-GP). The nanocomposites involved two levels of 
platelet-matrix interfacial strength. To prepare m-GP, GP suspensions were chemically 
modified using 4,4ʹ-Methylene diphenyl diisocyanate (MDI). The chemical reaction 
between GP and MDI produced reactive functional groups (carbonyl and amine radicals) 
attached to the GP surfaces. These reactive functional groups were found to improve the 
m-GP dispersion and the interfacial strength via forming covalent bonds between the m-
GP and the hosting matrix. Figure 3.11 shows the normalized elastic modulus (𝐸𝐸𝑐𝑐/𝐸𝐸𝑚𝑚) of 
GP/epoxy and m-GP/epoxy obtained for various wt% of nanoplatelets content. Clearly, the 
GP/epoxy samples involved higher elastic moduli relative to m-GP/epoxy samples as the 

(a)

(b) (c)



www.manaraa.com

55 

nanoplatelets content increased from 1.0-2.5 wt%. This is not the case at 4.0 wt% of the 
nanoplatelets content as the stiffening effect of GP diminished due to the agglomeration 
effect. In contrast, the m-GP/epoxy maintained a steadily improvement up to 4.0 wt% of 
m-GP content. A slight deterioration in the obtained elastic modulus can be observed at 5.5 
wt% of m-GP content.  

Considering the adverse effect of agglomeration on the obtained elastic moduli at 
higher nanoplatelets contents, the predicted elastic moduli of the nanocomposites modeled 
herein are in a good agreement with the experimental moduli obtained by Zaman et al. 
Specifically, the predicted elastic moduli of the GNP/epoxy are in excellent agreement with 
the experimental values obtained at 1.0-2.5 wt% nanoplatelets content. The experimental 
elastic moduli of the m-GP/epoxy at 1.0-2.5 wt% of nanoplatelets content are also 
excellently captured by the predicted moduli of 4GNP/, GO/, and FGO/epoxy 
nanocomposite models. A close agreement can be observed between the predicted and 
experimental moduli at higher nanoplatelets content (4.0-5.5 wt%). It is important to note 
that all the moduli predicted herein are at 100 aspect ratio of the nanoplatelets while the 
cluster size of GP and m-GP at 4.0 wt% were reported to be 0.7±0.5 µm and 1.8±1.5 µm, 
respectively. The weak mechanical performance of the m-GP/epoxy relative to the 
GP/epoxy at 1.0-2.5 wt% of nanoplatelets content supports the current predictions, as GO 
and FGO have weaker reinforcing effect relative to GNP. Practically, this trend does not 
apply at higher nanoplatelets content as the agglomeration effect becomes more 
predominant for unmodified nanoplatelets.    

 

 
Figure 3.11: Normalized elastic modulus predicted at 100 aspect ratio for various 
nanoplatelets content and compared with experiment from Zaman et al. (2011). 

 
Figure 3.12 shows the predicted elastic modulus of bulk GO/epoxy and FGO/epoxy 

nanocomposites (𝐸𝐸𝑐𝑐) normalized by the matrix modulus (𝐸𝐸𝑚𝑚). The moduli are predicted 
for various aspect ratio values at 1.0 wt% content of the nanoplatelets. The predictions are 



www.manaraa.com

56 

in a good agreement with the experimental value of the GO/epoxy elastic modulus from 
Bortz et al. [14]. Even though the GO nanoplatelet dimensions were not identified in the 
experimental work, the variation in the measured modules spans a wide range (~10 to 
infinite) of possible aspect ratio values. Figure 3.12 also indicates an excellent agreement 
between the mean modulus value from experiment and the predicted modulus of GO/epoxy 
at aspect ratio span from ~103 to infinite. However, the mean modulus value from the 
experiment and the predicted modulus of FGO/epoxy are in excellent agreement at ~350 
of aspect ratio.  

 

         
Figure 3.12: Normalized elastic modulus of GO/epoxy and FGO/epoxy predicted for 

various aspect ratio at 1.0 wt% of the nanoplatelets content. Experiment; epoxy matrix 
modulus= 2.99±0.15 GPa, GO content= 1.0 wt%. 

 
Figure 3.13 shows the normalized elastic moduli of the proposed nanocomposites 

predicted for various aspect ratio values at 1.0 wt% of nanoplatelets content compared with 
experiment from Cho et al. [98]. The measured elastic modulus of the as-received graphite 
100GNP/epoxy nanocomposite with 5 aspect ratio and 1.0 wt% of nanoplatelets content is 
in an excellent agreement with the predicted elastic moduli of 4GNP/, GO/, and 
FGO/epoxy. Also, the predicted modulus of GNP/epoxy is slightly higher than the mean 
value of the experimental modulus, yet still within the standard deviation. For the 
experimental modulus of the exfoliated graphite 100GNP/epoxy nanocomposite with 70 
aspect ratio and 1.0 wt% of nanoplatelets content, its mean value is slightly higher than the 
predicted moduli. All the predicted moduli, however, are within the lower bound of the 
standard deviation. It is important to note that including GO/epoxy and FGO/epoxy 
nanocomposites in the comparison is to assess their performance, which is identical with 
4GNP/epoxy for an aspect ratio less than 200. In general, the results indicate the validity 
of the current work predictions. 
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Figure 3.13: Normalized elastic modulus of 4GNP/, GNP/, GO/, and FGO/epoxy 
predicted for various aspect ratio values at 1.0 wt% of the nanoplatelets content. 
Experiment; epoxy matrix modulus= 3.27 GPa, nanoplatelets content= 1.0 wt%. 

 
Karevan et al. [86] provided experimental mechanical properties of poly propylene 

(PP) reinforced with exfoliated graphite nanoplatelets (xGnPTM). The chemical solvents 
used in the exfoliating process of graphite introduced some chemical elements to the xGnP 
lattice structure. In this particular case study, low amounts of oxygen, nitrogen, and sulfur 
are expected to exist as it is reported by the supplier. In addition, the xGnP aspect ratio was 
reported to be 50 as provided by the supplier, and 20 as measured after processing the 
nanocomposite material using the atomic force microscopy (AFM). Assuming pristine 
xGnP (that is, ignoring the effect of the residual chemical elements), the normalized 
experimental elastic moduli at 3.0, 5.0, and 10.0 wt% are comparable with the predicted 
normalized elastic moduli of 4GNP/epoxy and GNP/epoxy at the given nanoplatelets 
contents and aspect ratio span (Figure 3.14.a). Specifically, the experimental modulus 
value using 3.0 wt% of xGnP content is in an excellent agreement with predicted moduli 
of the perfectly dispersed GNP in matrix (GNP/epoxy). In addition, it is slightly higher 
than the predicted moduli at a certain agglomeration level from the 4GNP/epoxy. Due to 
the agglomeration effect at higher xGnP content, the experimental moduli at 5.0 and 10.0 
wt% of xGnP content are deviated away from the predicted moduli of the perfectly 
dispersed GNP/epoxy nanocomposite toward the predictions of 4GNP/epoxy which are at 
lower dispersion level. On the other hand, all the experimental moduli are slightly higher 
than the predicted moduli using GO/epoxy and FGO/epoxy nanocomposites (Figure 
3.14.b). This is mainly attributed to the detrimental effect of the large amount of oxygen 
and functional groups in the modeled composites relative to the experiment. 
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Figure 3.14: Normalized elastic moduli predicted for various nanoplatelets content, (a) 

GNP/epoxy and 4GNP/epoxy, (b) GO/epoxy and FGO/epoxy. Experiment; matrix 
modulus= 1.43±0.06 GPa, aspect ratio= 50 as provided by the supplier, 20 as measured 

using AFM. 
 
Among the several types of nanoplatelets that were used to reinforce the epoxy matrix 

and experimentally tested by Chong et al. [85], the XG-C/epoxy and XG-M/epoxy are used 
herein for validating the predicted elastic moduli in this work. The manufacturing process 
used to prepare the nanocomposites involved using two different types of solvents to 
disperse the dry powder of GNP modifiers in matrix. They used ultrasonication with 
tetrahydrofuran (THF) or n-methyl-pyrrolidone (NMP) solvents that produced two 
different levels of GNP dispersion. Particularly, NMP solvent produced higher level of 
GNP dispersion relative to the THF. Therefore, the experimental moduli of the 
nanocomposites using NMP were higher relative to those using THF solvent. Residual 
solvents in the nanocomposites are expected to introduce chemical elements to the GNP. 
This affects the carbon lattice structure of GNP depending on the chemical elements’ 
concentration. In addition, GNP exfoliation and the mixing technique used in preparing the 
nanocomposites can greatly affect the GNP aspect ratio.  

The normalized elastic moduli predicted for GNP/epoxy and 4GNP/epoxy 
nanocomposites shown in Figure 3.15.a are generally in a good agreement with 
experimental normalized elastic moduli of XG-C-THF/epoxy and XG-C-NMP/epoxy. 
Practically, as agglomeration level increases with GNP content, the aspect ratio decreases. 
Hence, experimental values of the modulus at low GNP content (0.1 and 0.5 wt%) are in 
excellent agreement with the predicted moduli at large aspect ratio. However, experimental 
values of the modulus at higher GNP content (1.0 and 2.0 wt%) are deviated toward the 
predicted moduli at a lower aspect ratio. In both cases, the experimental moduli of XG-C-
NMP/epoxy are close to the predictions of GNP/epoxy, while XG-C-THF/epoxy moduli 
are close to the predictions of 4GNP/epoxy. The experimental moduli were also compared 
with predicted moduli of GO/epoxy and FGO/epoxy (Figure 3.15.b). Considering the 
detrimental effect of the high concentration of oxygen in GO and FGO nanoplatelets, an 
acceptable agreement with experiment can be observed.      

(a) (b)
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Figure 3.15: Normalized elastic modulus predicted for various nanoplatelets content, (a) 

GNP/epoxy and 4GNP/epoxy, (b) GO/epoxy and FGO/epoxy. Experiment; matrix 
modulus= 2.9±0.1 GPa, aspect ratio= 1000 as the manufacturer value, 19 as measured 

using FEGSEM. 
 
To some extent, the judgment used in justifying the results shown in Figure 3.15 can 

also be feasible for the predicted moduli compared with experimental moduli of XG-M-
THF/epoxy and XG-M-NMP/epoxy shown in Figure 3.16. However, the large deviation 
between predicted and experimental moduli at 2.0 wt% of GNP content can be attributed 
to the high agglomeration degree in the experimental value. 

 
Figure 3.16: Normalized elastic modulus predicted for various nanoplatelets content, (a) 

GNP/epoxy and 4GNP/epoxy, (b) GO/epoxy and FGO/epoxy. Experiment; matrix 
modulus= 2.9±0.1 GPa, aspect ratio= 4167 as the manufacturer value, 1142 as measured 

using FEGSEM. 
 
Most experimental results indicate a substantial increase in the mechanical response of 

nanocomposites at low nanoplatelets content. Yet limited and even unfavorable mechanical 
behavior could be observed at higher contents. Practically, pristine GNPs tend to 
agglomerate within the hosting matrix and form GNP particles having low aspect ratios, 

(a) (b)

(a) (b)
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which limits its reinforcing effect. At large GNP contents, the GNP agglomeration and the 
raised material viscosity become more destructive to the nanocomposite structure and in 
most cases causes a decline in the material mechanical response. Functionalization is an 
effective solution to prevent agglomeration and maintain the dispersibility even at large 
amounts of GNP content. 

3.4.3 General Predictions of Bulk Nanocomposites Mechanical Response 

This section provides generalized predictions of the elastic 𝐸𝐸𝑐𝑐 and shear 𝐺𝐺𝑐𝑐 moduli of 
the bulk nanocomposites supported by detailed discussions. These predictions can be 
utilized to better understand the influence of the nanoplatelets content, aspect ratio, 
functionalization, and dispersion on the mechanical response of the bulk nanocomposite. 
For the ideal case study with perfectly dispersed GNP in epoxy matrix, the normalized 
elastic and shear moduli of bulk GNP/epoxy were predicted and plotted for virous GNP 
content and aspect ratio values and are shown in Figure 3.17.  

 
Figure 3.17: Normalized elastic and shear moduli of bulk GNP/epoxy predicted for 
various nanoplatelets content and aspect ratio values; (a) 𝐸𝐸𝑐𝑐/𝐸𝐸𝑚𝑚 vs GNP content at 

different aspect ratio values, (b) 𝐺𝐺𝑐𝑐/𝐺𝐺𝑚𝑚 vs GNP content at different aspect ratio values, 
(c) 𝐸𝐸𝑐𝑐/𝐸𝐸𝑚𝑚 vs aspect ratio at different GNP content, (d) 𝐺𝐺𝑐𝑐/𝐺𝐺𝑚𝑚 vs aspect ratio at different 

GNP content. 

(a) (b)

(c) (d)
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Figures 3.17.a,b show a consistent increase in 𝐸𝐸𝑐𝑐 and 𝐺𝐺𝑐𝑐 with GNP content and aspect 
ratio. The maximum improvement in 𝐸𝐸𝑐𝑐 and 𝐺𝐺𝑐𝑐  at 2.5 wt% (1.389 vol%) of GNP with 
infinitely aspect ratio is more than 100%. However, the reinforcing effect of GNP plateaus 
at aspect ratio values greater than 104, as shown in Figures 3.17.c,d. In addition, the 
reinforcing effect of GNP is limited for aspect ratio values below 102 and it becomes 
significant within 102-104 aspect ratio span. This trend can be clearly observed at high GNP 
contents.  

At a certain lower level of GNP dispersion, the bulk 4GNP/epoxy nanocomposite 
response exhibits a similar trend to the bulk GNP/epoxy as shown in Figure 3.18. However, 
the reinforcement function of 4GNP is relatively less due to the agglomeration effect. In 
both nanocomposite types, the improvement in 𝐺𝐺𝑐𝑐 is ~10% higher than 𝐸𝐸𝑐𝑐. 

 

 
Figure 3.18: Normalized elastic and shear moduli of bulk 4GNP/epoxy predicted for 
various nanoplatelets content and aspect ratio values; (a) 𝐸𝐸𝑐𝑐/𝐸𝐸𝑚𝑚 vs 4GNP content at 

different aspect ratio values, (b) 𝐺𝐺𝑐𝑐/𝐺𝐺𝑚𝑚 vs 4GNP content at different aspect ratio values, 
(c) 𝐸𝐸𝑐𝑐/𝐸𝐸𝑚𝑚 vs aspect ratio at different 4GNP content, (d) 𝐺𝐺𝑐𝑐/𝐺𝐺𝑚𝑚 vs aspect ratio at 

different 4GNP content. 
 
 

(a) (b)

(c) (d)
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Figure 3.19 and Figure 3.20 show the mechanical response of bulk GO/epoxy and 
FGO/epoxy, respectively. The two nanocomposite types exhibit rather identical 
mechanical response with a slightly better reinforcing function when using FGO 
nanoplatelets. As discussed above in the previous section, both GO and FGO involved a 
weaker reinforcing effect in comparison to the GNP. Therefore, the mechanical properties 
of their nanocomposites at the bulk level involved limited improvement. Generally, there 
is an increase in 𝐸𝐸𝑐𝑐 and 𝐺𝐺𝑐𝑐 with increasing the GO or FGO content and aspect ratio. For 
the GO/epoxy mechanical response, the maximum improvement in 𝐸𝐸𝑐𝑐 (Figure 3.19.a) and 
𝐺𝐺𝑐𝑐  (Figure 3.19.b) at 2.5 wt% (1.305 vol%) of GO with infinitely aspect ratio is ~9% and 
~10%, respectively. For the FGO/epoxy mechanical response, however, the maximum 
improvement in 𝐸𝐸𝑐𝑐 (Figure 3.20.a) and 𝐺𝐺𝑐𝑐  (Figure 3.20.b) at 2.5 wt% (1.358 vol%) of FGO 
with infinitely aspect ratio is ~10% and ~11%, respectively. In both nanocomposites, the 
improvement in 𝐺𝐺𝑐𝑐 is 1% higher than 𝐸𝐸𝑐𝑐. 

 

 
Figure 3.19: Normalized elastic and shear moduli of bulk GO/epoxy predicted for various 
nanoplatelets content and aspect ratio values; (a) 𝐸𝐸𝑐𝑐/𝐸𝐸𝑚𝑚 vs GO content at different aspect 

ratio values, (b) 𝐺𝐺𝑐𝑐/𝐺𝐺𝑚𝑚 vs GO content at different aspect ratio values, (c) 𝐸𝐸𝑐𝑐/𝐸𝐸𝑚𝑚 vs 
aspect ratio at different GO content, (d) 𝐺𝐺𝑐𝑐/𝐺𝐺𝑚𝑚 vs aspect ratio at different GO content. 

(a) (b)

(c) (d)
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Figure 3.20: Normalized elastic and shear moduli of bulk FGO/epoxy predicted for 
various nanoplatelets content and aspect ratio values; (a) 𝐸𝐸𝑐𝑐/𝐸𝐸𝑚𝑚 vs FGO content at 

different aspect ratio values, (b) 𝐺𝐺𝑐𝑐/𝐺𝐺𝑚𝑚 vs FGO content at different aspect ratio values, 
(c) 𝐸𝐸𝑐𝑐/𝐸𝐸𝑚𝑚 vs aspect ratio at different FGO content, (d) 𝐺𝐺𝑐𝑐/𝐺𝐺𝑚𝑚 vs aspect ratio at different 

FGO content. 
 
The reinforcing effect of GO (Figures 3.19.c,d) and FGO (Figures 3.20.c,d) plateaus at 

aspect ratio values greater than 103. In addition, it is limited for aspect ratio values below 
101 and becomes slightly effective within 101-103 aspect ratio span. This trend can be 
clearly observed at high GO or FGO contents. 

For comparison reason, the normalized elastic modulus (Figure 3.21.a) and normalized 
shear modulus (Figure 3.21.b) are plotted for bulk GNP/, 4GNP/, GO/, and FGO/epoxy 
together for various aspect ratio at 1.0 wt% of the nanoplatelets content. The volume 
fraction (vol%) for each nanoplatelet is also provided as there is a slight difference between 
them. The minor variation in the nanoplatelets volume fraction can be attributed to the 
number of atoms, chemical composition, and wrinkled morphology in each case. Clearly, 
the best response can be observed for the bulk GNP/epoxy nanocomposite which has the 
perfect dispersion of the intact GNP in matrix. The bulk 4GNP/epoxy exhibits a consistent 
lower response relative to the bulk GNP/epoxy which is attributed to the lower dispersion 
level with the 4GNP. However, the difference is likely to be decreased at aspect ratio values 

(a) (b)

(c) (d)
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larger than 104. Both FGO/epoxy and GO/epoxy bulks exhibit nearly identical response 
with FGO/epoxy in the lead. Increasing the aspect ratio involved approximately 
insignificant improvement in the mechanical response. This can be mainly attributed to the 
detrimental effect of the high concentration of oxygen introduced to the GNP as discussed 
previously. However, their mechanical response is comparable with the bulk 4GNP/epoxy 
response at aspect ratio values below 200. Considering the perfect dispersion of the current 
specific case studies, the GNP/epoxy composite response can be assumed as the ideal case 
or the upper bound of the mechanical response. However, the FGO/epoxy or GO/epoxy 
can be assumed as the lower bound of the mechanical response. That is, GO and FGO 
nanoplatelets with lower oxygen concentrations are expected to exhibit better mechanical 
response. Finally, a general indication that can be extracted from the current predictions 
refers to an improvement in the predicted elastic modulus with increasing the nanoplatelet 
content and its aspect ratio. 

 

 
Figure 3.21: Normalized elastic modulus (a) and shear modulus (b) for bulk GNP/, 
4GNP/, GO/, and FGO/epoxy for various aspect ratio values and at 1.0 wt% of the 

nanoplatelets content. 

3.5 Summary and Conclusions 

A multiscale computational approach has been performed to assess the mechanical 
performance of aerospace epoxy material reinforced with functionalized GNP. A single 
layer of GNP was initially modeled using MD to represent the pristine nanoplatelet of 
graphene and then modified to create a highly concentrated graphene oxide (GO) 
nanoplatelet and functionalized graphene oxide (FGO) nanoplatelet. For the first time, the 
functionalized GNP samples were modeled based on experimental measurements of which 
functional groups were presented and were experimentally informed. The three 
nanoplatelets were used to reinforce the epoxy matrix (DGEBA-DETDA epoxy system) 
and generate three MD models of nanoplatelet/epoxy nanocomposites. These MD models 
were used to predict the localized mechanical properties of the interphase region.  

(a) (b)
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The outcome at the nanoscale level indicated a significant degradation in the 
reinforcing effect of the GO and FGO relative to the pristine GNP. The weakness in the 
mechanical performance of GO and FGO originated from the alteration in the carbon lattice 
structure of GNP from its robust sp2 structure to a weak sp3 structure. As a result, the 
FGO/epoxy and GO/epoxy MD models exhibited a significant weaker mechanical 
response relative to GNP/epoxy. For instance, introducing the large amount of oxygen 
groups to the GNP surface resulted in an in-plane elastic and shear moduli of GO/epoxy 
MD model less than that for GNP/epoxy MD model by -89.25% and -74.42%, respectively. 
On the other hand, the surface roughness and wrinkled morphology of GO and FGO were 
found to improve the interlocking mechanism with the hosting matrix which led to an 
improvement in the interfacial interaction/adhesion. As a result,  the out-of-plane shear 
modulus involved a tremendous improvement which increased by 15.45 times for 
GO/epoxy and by 19.52 times for FGO/epoxy relative to the GNP/epoxy.  

The predicted mechanical properties at the nanoscale level were then further processed 
using micromechanics to predict the mechanical response of the nanocomposites at the 
bulk level for various nanoplatelets content and aspect ratio values. The mechanical 
response of the 4-layer GNP/epoxy (4GNP/epoxy) bulk nanocomposite, which was 
modeled in Chapter 2, was included in the comparison study to represent a certain level of 
GNP dispersion. Despite the diversity in the factors which could potentially impact the 
mechanical response of the nanocomposites, such as; the nanoplatelets agglomeration, 
content, aspect ratio, and their chemical composition, the current work predictions were in 
a good agreement with the experimental results available from the literature. Providing the 
predicted mechanical properties at the bulk level, a remarkable observation refers to an 
improvement in the mechanical response of the nanocomposites with increasing the 
nanoplatelets content and aspect ratio.  

The optimum mechanical response was observed for the bulk GNP/epoxy 
nanocomposite. This can be attributed to the perfect dispersion of the intact and strong 
graphene nanosheets within the hosting matrix. The mechanical response of the 
4GNP/epoxy involved a similar trend relative to the GNP/epoxy, yet it was lower due to 
the agglomeration effect. In fact, increasing the number of graphene layers within the GNP 
crystal imitates higher agglomeration levels of GNP within the matrix. This reduces the 
effective aspect ratio of the GNP crystal and leads to more deterioration in the mechanical 
response of the nanocomposite. Considering the GNP surface functionalization influence, 
it has been found to preserve high levels of GNP dispersion within the epoxy matrix. 
Meanwhile, the high concentrations of oxygen groups resulted in a significant degradation 
in the reinforcing function of GO and FGO. According to the predictions of the particular 
case studies modeled in this work, the mechanical response of the pristine GNP/epoxy can 
be assumed as the upper bound limit. However, the mechanical response of GO/epoxy and 
FGO/epoxy can be assumed as the lower bound limit. Any other cases of GNP with oxygen 
concentration lower than that used herein is expected to register a mechanical response 
between the designated upper and lower bound limits. 

The current work predictions indicate that the bulk GO/epoxy and FGO/epoxy can 
produce a comparable mechanical response to the bulk GNP/epoxy and 4GNP/epoxy at 
low nanoplatelets content and low nanoplatelets aspect ratio. At larger nanoplatelets 
content and aspect ratio values, however, the detrimental effect of the oxygen and 
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functional groups on the GNP strength predominates the overall mechanical response. 
Thus, performing such computational studies can be utilized to optimize the overall 
mechanical response of such nanocomposite materials through manipulating and adjusting 
the wide range of the controlling factors and key processing parameters. 
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Chapter 4 
 

MICRO/MACRO MECHANICS ANALYSIS OF HYBRID 
COMPOSITE PLATES AND LAMINATED HYBRID 

COMPOSITE PANELS 

This chapter focuses on the micro/macro mechanics analysis of CF/nanoplatelet/epoxy 
hybrid composites. The predicted mechanical properties are considered for unidirectional 
CF/nanoplatelet/epoxy hybrid composite plates and three different configurations of 
laminated CF/nanoplatelet/epoxy hybrid composite panels. The reinforcing effect of the 
four nanoplatelet types (4GNP, GNP, GO, FGO) is also considered in the predictions. 

4.1 Introduction 

Owing to their high strength and rigidity, in addition to the superior corrosion and 
fatigue resistance, CFs have been commonly used to reinforce the polymer-based 
composites. Such composites have been utilized in constructing strong and lightweight 
structural components for aerospace, automotive, marine, offshore, and civil infrastructure 
applications [42, 99, 100]. For composite materials to be used in aircraft structural 
components, the CF volume content can be more than 50%. The typical CF volume content 
is between 55% and 65%, however, 70% is the maximum possible content that can be 
achieved [6]. The reinforcing effect of unidirectional distribution/arrangement of CF in 
polymer composites is limited to the axial direction of the composite lamina. Therefore, 
adding carbon nanofillers (such as GNP and CNT) to the matrix are used to improve the 
mechanical performance of the lamina in the transverse direction [9, 46]. In light of that, 
this chapter involves developing a computational approach to model and predict the 
mechanical properties of unidirectional CF/nanoplatelet/epoxy hybrid composite plates 
and three different arrangements of laminated hybrid composite panels.  

4.2 Micromechanics Modeling of Hybrid Composites 

Figure 4.1 shows the modeling workflow used to generate different configurations of 
laminated hybrid composites. The hybrid composite modeling scheme utilized the ultimate 
predictions from the multiscale modeling workflow given in Chapter 3. Specifically, the 
nanoplatelet/epoxy homogenized mechanical properties predicted at the bulk level of the 
nanocomposite (Figure 3.9.c or Figure 4.1.a) were imposed as the matrix in a second 
MAC/GMC 4.0 script to generate the CF/nanoplatelet/epoxy hybrid composite. Figure 
4.1.b shows the built-in RUC (ARCHID=13) of a 26 × 26 circular array which was selected 
to represent the CF architecture within the nanocomposite matrix. The mechanical 
properties of AS4 CF given in Table 2.2 were utilized to represent the fiber subcell in the 
RUC. Figure 4.1.c shows representative sketches of the unidirectional and cross-ply 
laminate hybrid composites. 
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Figure 4.1: Modeling workflow of CF/nanoplatelet/epoxy hybrid composites 

(microscale/macroscale). 

4.3 Results and Discussions 

The modeling approach for hybrid composites has been applied and validated 
previously in Chapter 2 for the 4-layer GNP/epoxy nanocomposite reinforced with 
unidirectional CF. Accordingly, the predicted mechanical properties of the unidirectional 
CF/nanoplatelet/epoxy hybrid composites and three different configurations of laminated 
hybrid composite panels are described and discussed in this section. The reinforcing effect 
of CF based on its volume fraction (content), and of GNP based on the nanoplatelet content, 
dispersion, aspect ratio, and functionality are extensively explored in this section. Note that 
all the micromechanics modeling and predictions were performed at room temperature. 
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4.3.1 Unidirectional CF/Nanoplatelet/Epoxy Hybrid Composites 

Figure 4.2 shows the predicted axial (𝐸𝐸11), transverse (𝐸𝐸22= 𝐸𝐸33), and shear (𝐺𝐺12, 𝐺𝐺23) 
moduli of unidirectional CF/GNP/Epoxy hybrid composite. Generally, there is an 
improvement in the mechanical response as either the GNP content or its aspect ratio was 
increased. The reinforcing degree, however, is governed by the direction of the measured 
mechanical property.  

 

 
Figure 4.2: Predicted elastic and shear moduli of unidirectional CF/GNP/epoxy for 

various nanoplatelets content and aspect ratio values; (a) Axial elastic modulus 𝐸𝐸11, (b) 
Transverse elastic modulus 𝐸𝐸22, (c) Shear modulus 𝐺𝐺12, (d) Shear modulus 𝐺𝐺23. The 

volume fraction of CF is 56%. 
 
To obtain the reinforcing effect of the GNP on each mechanical property of the hybrid 

composite, the mechanical properties were normalized and plotted together in one graph. 
For the reinforcing effect caused by increasing the GNP aspect ratio, Figure 4.3.a shows 
the normalized 𝐸𝐸11, 𝐸𝐸22, 𝐺𝐺12, and 𝐺𝐺23 predicted at 1.0 wt% of GNP content. For the 
reinforcing effect caused by increasing the GNP content, Figure 4.3.b shows the 
normalized predicted mechanical properties at 103 GNP aspect ratio. Note that the 
mechanical properties in both cases were predicted at 56% of CF volume fraction. Clearly, 
the best improvement can be observed in the shear moduli with 𝐺𝐺12 > 𝐺𝐺23. Meanwhile, 𝐸𝐸11 

(a) (b)
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involves trivial improvement relative to 𝐸𝐸22 due to the predomination of CF reinforcing 
effect along the axial direction. As a result, an overall order of the reinforcing effect of the 
GNP on the mechanical properties can be written as; the improvement in 𝐺𝐺12 > 𝐺𝐺23 > 𝐸𝐸22> 
𝐸𝐸11. 

 

 
Figure 4.3: Normalized elastic and shear moduli for unidirectional CF/GNP/epoxy; (a) at 
1.0 wt% of GNP content and various GNP aspect ratio, (b) at 103 GNP aspect ratio and 

various GNP content. The volume fraction of CF is 56%. 
 
At a certain lower level of GNP dispersion, the mechanical response of unidirectional 

CF/4GNP/epoxy hybrid composite exhibits a similar trend to that observed for the 
unidirectional CF/GNP/epoxy. Figure 4.4 shows an improvement in the predicted 𝐸𝐸11, 𝐸𝐸22, 
𝐺𝐺12, and 𝐺𝐺23 moduli of the unidirectional CF/4GNP/Epoxy hybrid composite as either the 
4GNP content or its aspect ratio was increased. The normalized mechanical properties 
predicted at 1.0 wt% of the 4GNP content and for various values of its aspect ratio are 
shown in Figure 4.5.a. Meanwhile, Figure 4.5.b exhibits the normalized mechanical 
properties predicted at 103 as the aspect ratio of the 4GNP and for various values of its 
content. Once again, the reinforcing effect of the 4GNP on 𝐺𝐺12 surpasses that on 𝐺𝐺23 while 
both exceed the observed reinforcing effect of 4GNP on 𝐸𝐸22. However, the improvement 
in 𝐸𝐸22 is greater than that in 𝐸𝐸11 which involved insignificant (trivial) improvement as its 
value is dominated by the reinforcing effect of CF. 

Figures 4.6-4.9 show the mechanical response of unidirectional CF/GO/epoxy and 
unidirectional CF/FGO/epoxy hybrid composites. Even though the FGO reinforced hybrid 
composite indicates slightly better mechanical response relative to the GO reinforced 
hybrid composite, both hybrid composites involved a limited improvement in the 
mechanical properties with increasing the nanoplatelet content and its aspect ratio. The 
improvement range for the hybrid composite reinforced with GO or FGO is very small in 
comparison to the hybrid composite reinforced with GNP or 4GNP. Yet, similar trends can 
be observed when comparing the reinforcing effect on each mechanical property. That is, 
the trend of reinforcing effect of GO or FGO on the mechanical properties is similar to that 

(a) (b)
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observed for GNP or 4GNP, where the improvement in 𝐺𝐺12 > 𝐺𝐺23 > 𝐸𝐸22> 𝐸𝐸11 as shown in 
Figure 4.7 and Figure 4.9, respectively.  

 

 
Figure 4.4: Predicted elastic and shear moduli of unidirectional CF/4GNP/epoxy for 

various nanoplatelets content and aspect ratio values; (a) Axial elastic modulus 𝐸𝐸11, (b) 
Transverse elastic modulus 𝐸𝐸22, (c) Shear modulus 𝐺𝐺12, (d) Shear modulus 𝐺𝐺23. The 

volume fraction of CF is 56%. 
 

(a) (b)

(c) (d)
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Figure 4.5: Normalized elastic and shear moduli for unidirectional CF/4GNP/epoxy; (a) 
at 1.0 wt% of 4GNP content and various 4GNP aspect ratio, (b) at 103 4GNP aspect ratio 

and various 4GNP content. The volume fraction of CF is 56%. 
 

 
Figure 4.6: Predicted elastic and shear moduli of unidirectional CF/GO/epoxy for various 

nanoplatelets content and aspect ratio values; (a) Axial elastic modulus 𝐸𝐸11, (b) 
Transverse elastic modulus 𝐸𝐸22, (c) Shear modulus 𝐺𝐺12, (d) Shear modulus 𝐺𝐺23. The 

volume fraction of CF is 56%. 

(a) (b)

(a) (b)

(c) (d)
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Figure 4.7: Normalized elastic and shear moduli for unidirectional CF/GO/epoxy; (a) at 

1.0 wt% of GO content and various GO aspect ratio, (b) at 103 GO aspect ratio and 
various GO content. The volume fraction of CF is 56%. 

 

 
Figure 4.8: Predicted elastic and shear moduli of unidirectional CF/FGO/epoxy for 

various nanoplatelets content and aspect ratio values; (a) Axial elastic modulus 𝐸𝐸11, (b) 
Transverse elastic modulus 𝐸𝐸22, (c) Shear modulus 𝐺𝐺12, (d) Shear modulus 𝐺𝐺23. The 

volume fraction of CF is 56%. 

(a) (b)

(a) (b)

(c) (d)
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Figure 4.9: Normalized elastic and shear moduli for unidirectional CF/FGO/epoxy; (a) at 
1.0 wt% of FGO content and various FGO aspect ratio, (b) at 103 FGO aspect ratio and 

various FGO content. The volume fraction of CF is 56%. 
 
Figure 4.10 shows four sets of plots to separately compare the improvement in each 

mechanical property based on the hybrid composite type. These plots provide an evaluation 
of the reinforcing effect of the nanoplatelets on each mechanical property. Each set of plots 
provides the response of a specific mechanical property obtained at 1.0 wt% of the 
nanoplatelets content for various aspect ratio and at 103 aspect ratio for various 
nanoplatelets content. To emphasize the reinforcing effect, each predicted mechanical 
property was normalized by its initial magnitude. In general, the reinforcing effect of GNP 
is the highest among the other nanoplatelets. While the reinforcing effect of the 4GNP is 
slightly lower than that of GNP, FGO followed by GO have the lowest reinforcing effect. 
This is true for aspect ratio range 102-104. For aspect ratio values less than 102, which is 
most common to be observed in nanocomposites, all the nanoplatelet types involve a 
comparable reinforcing function. Interestingly, at very high aspect ratio (>104) the 
reinforcing effect of 4GNP can surpass that of GNP. That is, the larger the GNP aspect 
ratio, the lower the detrimental effect of agglomeration. 

(a) (b)
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Figure 4.10: The reinforcing effect of nanoplatelets on the predicted mechanical 

properties for the hybrid composites; (a-d) at 1.0 wt% of the nanoplatelets content for 
various aspect ratio values, (a`-d`) at 103 aspect ratio of the nanoplatelet for various 

nanoplatelets content. The volume fraction of CF is 56%. 

(a) (a`)

(b) (b`)

(c) (c`)

(d) (d`)
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Figures 4.11-4.14 show design map plots of unidirectional CF/nanoplatelet/epoxy 
hybrid composites which can be used to optimize the axial and transverse moduli by 
controlling the CF volume fraction (vol%) and the nanoplatelets content (wt%). The design 
map graphs were also plotted for different values of nanoplatelet aspect ratio which 
represents an additional factor to optimize the mechanical response. Generally, the plots 
reveal that both CF and the nanoplatelets have a tremendous impact on the elastic response 
of the hybrid composite. More specifically, CF shows a direct impact on the axial modulus 
of the hybrid composite which significantly increases with increasing the CF vol%. A 
limited contribution to the improvement in the axial modulus can be attributed to the 
nanoplatelet content and its aspect ratio. Whereas, the improvement in the transverse 
modulus of the hybrid composite is largely dominated by the nanoplatelet content and its 
aspect ratio.  

Due to the domination of CF on the axial modulus of the hybrid composite, the 
improvement trend in the axial modulus associated with the CF vol% is nearly determined 
across the four types of hybrid composites. However, different improvement levels in the 
transverse modulus can be observed in each case depending on the nanoplatelet type, 
content, and its aspect ratio. The best improvement levels in the transverse modulus are 
registered for the unidirectional CF/GNP/epoxy hybrid composite (Figure 4.11). This is 
attributed to the aforementioned ideal circumstances of modeling bulk GNP/epoxy 
nanocomposite. The agglomeration in 4GNP resulted in an implicitly negative effect on 
the nanoplatelets dispersion and their effective aspect ratio. Therefore, the unidirectional 
CF/4GNP/epoxy involved lower improvement levels in the transverse modulus (Figure 
4.12) relative to the unidirectional CF/GNP/epoxy (Figure 4.11). Finally, the improvement 
levels in the transverse modulus of unidirectional CF/GO/epoxy (Figure 4.13) and 
CF/FGO/epoxy (Figure 4.14) are limited with the later hybrid composite being slightly in 
the lead. As discussed above, this is mainly attributed to the weak mechanical performance 
of GO and FGO nanoplatelets relative to the pristine GNP which is mainly attributed to the 
large oxygen content. Thus, the limited reinforcing effect of GO and FGO resulted in 
relatively short ranges of improvement in the transverse modulus of their hybrid 
composites as the nanoplatelets content and aspect ratio were increased. 
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Figure 4.11: Predicted axial and transverse moduli of unidirectional CF/GNP/epoxy at 

different; CF volume fraction (vol%), GNP content (wt%), and GNP aspect ratio values. 

(a) (e)

(b) (f)

(c) (g)

(d)
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Figure 4.12: Predicted axial and transverse moduli of unidirectional CF/4GNP/epoxy at 

different; CF volume fraction (vol%), 4GNP content (wt%), and 4GNP aspect ratio 
values. 

(a) (e)

(b) (f)

(c) (g)

(d)
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Figure 4.13: Predicted axial and transverse moduli of unidirectional CF/GO/epoxy at 
different; CF volume fraction (vol%), GO content (wt%), and GO aspect ratio values. 

    
 

 
 
 
 
 
 

(a) (c)

(b) (d)
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Figure 4.14: Predicted axial and transverse moduli of unidirectional CF/FGO/epoxy at 

different; CF volume fraction (vol%), FGO content (wt%), and FGO aspect ratio values 
 
 
 
 
 
 
 

 

(a) (c)

(b) (d)
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4.3.2 Laminated Hybrid Composite Panels 

The mechanical response of three different stacking configurations of laminated 
CF/nanoplatelet/epoxy hybrid composite panels is explored. The stacking order for each 
laminated composite panel is given as; 

 
• Symmetric balanced cross-ply laminated composite panel (8 layers) 

[0/90/0/90/90/0/90/0] ≡ [0/90/0/90]s ≡ CP-8 
• Symmetric balanced angle-ply laminated composite panel (8 layers) 

[45/0/-45/90/90/-45/0/45] ≡ [45/0/-45/90]s ≡ AP-8 
• Symmetric balanced angle-ply laminated composite panel (6 layers) 

[60/-60/0/0/-60/60] ≡ [60/-60/0]s ≡ AP-6 
 

Note that each lamina in the laminated composite panel has a thickness of 0.25 mm, 
and the CF volume fraction is 56%. Figures 4.15-4.17 show the predicted mechanical 
properties of the three proposed laminated composite panels constructed using the 
CF/GNP/epoxy hybrid composite. Generally, there is an improvement in the mechanical 
response as the predicted mechanical properties exhibit an increase with increasing the 
GNP content and its aspect ratio. Note the coupling stiffness (B11) for symmetric balanced 
laminated composite panels is always zero. Also, the in-plane elastic moduli 𝐸𝐸𝑥𝑥𝑥𝑥 and 𝐸𝐸𝑦𝑦𝑦𝑦 
are identical due to the symmetry in laminating order. While the cross-ply composite panel 
exhibits a slight increase in its Poisson’s ratio with GNP content and aspect ratio, both 
angle-ply composite panels show a slight decrease. In all cases, however, the variation in 
the laminated panel contraction is very limited and can be ignored. Likewise, the predicted 
mechanical properties of the laminated composite panels using the CF/4GNP/epoxy hybrid 
composite are shown in Figures 4.18-4.20. Due to the certain level of agglomeration in 
4GNP relative to perfect dispersion in GNP (previously discussed), lower improvement 
levels in the mechanical properties can be observed for the laminated composite panels 
constructed using CF/4GNP/epoxy relative to that constructed using CF/GNP/epoxy. Both 
CF/GO/epoxy (Figures 4.21-4.23) and CF/FGO/epoxy (Figures 4.24-4.26) laminated 
composite panels exhibit nearly identical mechanical response. Referring to the low 
mechanical performance of functionalized nanoplatelets (previously discussed), the 
improvement in the predicted mechanical properties of the laminated composite panels 
constructed using functionalized GNP is limited in comparison to those constructed using 
pristine GNP.  
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Figure 4.15: Predicted mechanical properties of laminated CF/GNP/epoxy, a symmetric 

balanced cross-ply laminated composite panel [0/90/0/90]s ≡ CP-8; (a) Extensional 
stiffness, A11; (b) Coupling stiffness, B11; (c) Bending stiffness, D11; (d) Elastic modulus, 
𝐸𝐸𝑥𝑥𝑥𝑥= 𝐸𝐸𝑦𝑦𝑦𝑦; (e) Shear modulus, 𝐺𝐺𝑥𝑥𝑦𝑦; (f) Poisson’s ratio, 𝜈𝜈𝑥𝑥𝑦𝑦. The volume fraction of CF is 

56%. 
 
 
 

(a) (d)

(b) (e)

(c) (f)
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Figure 4.16: Predicted mechanical properties of laminated CF/GNP/epoxy, a symmetric 
balanced angle-ply laminated composite panel [45/0/-45/90]s ≡ AP-8; (a) Extensional 

stiffness, A11; (b) Coupling stiffness, B11; (c) Bending stiffness, D11; (d) Elastic modulus, 
𝐸𝐸𝑥𝑥𝑥𝑥= 𝐸𝐸𝑦𝑦𝑦𝑦; (e) Shear modulus, 𝐺𝐺𝑥𝑥𝑦𝑦; (f) Poisson’s ratio, 𝜈𝜈𝑥𝑥𝑦𝑦. The volume fraction of CF is 

56%. 
 
 
 

(a) (d)

(b) (e)

(c) (f)
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Figure 4.17: Predicted mechanical properties of laminated CF/GNP/epoxy, a symmetric 

balanced angle-ply laminated composite panel [60/-60/0]s ≡ AP-6; (a) Extensional 
stiffness, A11; (b) Coupling stiffness, B11; (c) Bending stiffness, D11; (d) Elastic modulus, 
𝐸𝐸𝑥𝑥𝑥𝑥= 𝐸𝐸𝑦𝑦𝑦𝑦; (e) Shear modulus, 𝐺𝐺𝑥𝑥𝑦𝑦; (f) Poisson’s ratio, 𝜈𝜈𝑥𝑥𝑦𝑦. The volume fraction of CF is 

56%. 
 
 
 

(a) (d)

(b) (e)
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Figure 4.18: Predicted mechanical properties of laminated CF/4GNP/epoxy, a symmetric 

balanced cross-ply laminated composite panel [0/90/0/90]s ≡ CP-8; (a) Extensional 
stiffness, A11; (b) Coupling stiffness, B11; (c) Bending stiffness, D11; (d) Elastic modulus, 
𝐸𝐸𝑥𝑥𝑥𝑥= 𝐸𝐸𝑦𝑦𝑦𝑦; (e) Shear modulus, 𝐺𝐺𝑥𝑥𝑦𝑦; (f) Poisson’s ratio, 𝜈𝜈𝑥𝑥𝑦𝑦. The volume fraction of CF is 

56%. 
 
 
 

(a) (d)

(b) (e)
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Figure 4.19: Predicted mechanical properties of laminated CF/4GNP/epoxy, a symmetric 

balanced angle-ply laminated composite panel [45/0/-45/90]s ≡ AP-8; (a) Extensional 
stiffness, A11; (b) Coupling stiffness, B11; (c) Bending stiffness, D11; (d) Elastic modulus, 
𝐸𝐸𝑥𝑥𝑥𝑥= 𝐸𝐸𝑦𝑦𝑦𝑦; (e) Shear modulus, 𝐺𝐺𝑥𝑥𝑦𝑦; (f) Poisson’s ratio, 𝜈𝜈𝑥𝑥𝑦𝑦. The volume fraction of CF is 

56%. 
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Figure 4.20: Predicted mechanical properties of laminated CF/4GNP/epoxy, a symmetric 

balanced angle-ply laminated composite panel [60/-60/0]s ≡ AP-6; (a) Extensional 
stiffness, A11; (b) Coupling stiffness, B11; (c) Bending stiffness, D11; (d) Elastic modulus, 
𝐸𝐸𝑥𝑥𝑥𝑥= 𝐸𝐸𝑦𝑦𝑦𝑦; (e) Shear modulus, 𝐺𝐺𝑥𝑥𝑦𝑦; (f) Poisson’s ratio, 𝜈𝜈𝑥𝑥𝑦𝑦. The volume fraction of CF is 

56%. 
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Figure 4.21: Predicted mechanical properties of laminated CF/GO/epoxy, a symmetric 

balanced cross-ply laminated composite panel [0/90/0/90]s ≡ CP-8; (a) Extensional 
stiffness, A11; (b) Coupling stiffness, B11; (c) Bending stiffness, D11; (d) Elastic modulus, 
𝐸𝐸𝑥𝑥𝑥𝑥= 𝐸𝐸𝑦𝑦𝑦𝑦; (e) Shear modulus, 𝐺𝐺𝑥𝑥𝑦𝑦; (f) Poisson’s ratio, 𝜈𝜈𝑥𝑥𝑦𝑦. The volume fraction of CF is 

56%. 
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Figure 4.22: Predicted mechanical properties of laminated CF/GO/epoxy, a symmetric 
balanced angle-ply laminated composite panel [45/0/-45/90]s ≡ AP-8; (a) Extensional 

stiffness, A11; (b) Coupling stiffness, B11; (c) Bending stiffness, D11; (d) Elastic modulus, 
𝐸𝐸𝑥𝑥𝑥𝑥= 𝐸𝐸𝑦𝑦𝑦𝑦; (e) Shear modulus, 𝐺𝐺𝑥𝑥𝑦𝑦; (f) Poisson’s ratio, 𝜈𝜈𝑥𝑥𝑦𝑦. The volume fraction of CF is 

56%. 
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Figure 4.23: Predicted mechanical properties of laminated CF/GO/epoxy, a symmetric 

balanced angle-ply laminated composite panel [60/-60/0]s ≡ AP-6; (a) Extensional 
stiffness, A11; (b) Coupling stiffness, B11; (c) Bending stiffness, D11; (d) Elastic modulus, 
𝐸𝐸𝑥𝑥𝑥𝑥= 𝐸𝐸𝑦𝑦𝑦𝑦; (e) Shear modulus, 𝐺𝐺𝑥𝑥𝑦𝑦; (f) Poisson’s ratio, 𝜈𝜈𝑥𝑥𝑦𝑦. The volume fraction of CF is 

56%. 
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Figure 4.24: Predicted mechanical properties of laminated CF/FGO/epoxy, a symmetric 

balanced cross-ply laminated composite panel [0/90/0/90]s ≡ CP-8; (a) Extensional 
stiffness, A11; (b) Coupling stiffness, B11; (c) Bending stiffness, D11; (d) Elastic modulus, 
𝐸𝐸𝑥𝑥𝑥𝑥= 𝐸𝐸𝑦𝑦𝑦𝑦; (e) Shear modulus, 𝐺𝐺𝑥𝑥𝑦𝑦; (f) Poisson’s ratio, 𝜈𝜈𝑥𝑥𝑦𝑦. The volume fraction of CF is 

56%. 
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Figure 4.25: Predicted mechanical properties of laminated CF/FGO/epoxy, a symmetric 
balanced angle-ply laminated composite panel [45/0/-45/90]s ≡ AP-8; (a) Extensional 

stiffness, A11; (b) Coupling stiffness, B11; (c) Bending stiffness, D11; (d) Elastic modulus, 
𝐸𝐸𝑥𝑥𝑥𝑥= 𝐸𝐸𝑦𝑦𝑦𝑦; (e) Shear modulus, 𝐺𝐺𝑥𝑥𝑦𝑦; (f) Poisson’s ratio, 𝜈𝜈𝑥𝑥𝑦𝑦. The volume fraction of CF is 

56%. 
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Figure 4.26: Predicted mechanical properties of laminated CF/GO/epoxy, a symmetric 

balanced angle-ply laminated composite panel [60/-60/0]s ≡ AP-6; (a) Extensional 
stiffness, A11; (b) Coupling stiffness, B11; (c) Bending stiffness, D11; (d) Elastic modulus, 
𝐸𝐸𝑥𝑥𝑥𝑥= 𝐸𝐸𝑦𝑦𝑦𝑦; (e) Shear modulus, 𝐺𝐺𝑥𝑥𝑦𝑦; (f) Poisson’s ratio, 𝜈𝜈𝑥𝑥𝑦𝑦. The volume fraction of CF is 

56%. 
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Figures 4.27-4.31 show the predicted mechanical properties of the laminated hybrid 
composite panels at 100 aspect ratio and various nanoplatelets content. Each plot compares 
the predicted elastic mechanical properties based on the three proposed structure 
configurations of the hybrid composite panels for each nanoplatelet type. The plots of the 
normalized elastic properties compare the reinforcing effect of the nanoplatelets content 
on the mechanical response.  

Considering Figure 4.27, the predicted extensional stiffness (A11) for the cross-ply 
composite panel model (CP-8) is much higher than those predicted for angle-ply composite 
panel models (AP-8 and AP-6). As AP-8 exhibits intermediate values of A11, the AP-6 
exhibits the lowest A11 values. Nevertheless, the normalized A11 plots refer to an identical 
and larger reinforcing effect of the nanoplatelets content in AP-8 and AP-6 relative to CP-
8. A similar trend in the improvement of the predicted response of A11 can be observed 
with increasing the nanoplatelets content.  

Considering Figure 4.28, the predicted bending stiffness (D11) for the angle-ply 
composite panel model (AP-6) is much lower than those predicted for cross-ply composite 
panel model (CP-8). The D11 values of AP-8 are also lower, yet closer to the D11 of CP-8. 
However, the normalized D11 plots refer to a larger reinforcing effect of the nanoplatelets 
content in AP-6 relative to CP-8. Furthermore, the reinforcing effect of the nanoplatelets 
content in AP-8 is slightly higher than that in CP-8. The improvement in D11 involved a 
similar trend in all plots with increasing the content of each of the four nanoplatelet types.    

Considering Figure 4.29, the predicted in-plane elastic modulus (𝐸𝐸𝑥𝑥𝑥𝑥= 𝐸𝐸𝑦𝑦𝑦𝑦) of CP-8 is 
higher relative to that in AP-8 and AP-6. Interestingly, both AP-6 and AP-8 show an 
identical in-plane elastic modulus despite the difference in the number of plies. They also 
show a better reinforcing effect when increasing the nanoplatelets content relative to that 
observed in CP-8. The improvement in the in-plane elastic modulus involved a similar 
trend in all plots when increasing the content of each of the four nanoplatelet types. 

For the predicted in-plane shear modulus (𝐺𝐺𝑥𝑥𝑦𝑦) shown in Figure 4.30, the case is the 
opposite to that observed in the predicted in-plane elastic modulus. That is, 𝐺𝐺𝑥𝑥𝑦𝑦 of CP-8 is 
much lower than that observed for AP-8 and AP-6, which are showing an identical 𝐺𝐺𝑥𝑥𝑦𝑦 
values. However, the reinforcing effect of the nanoplatelets content observed in the CP-8 
is higher relative to that observed in AP-6 or AP-8. The improvement in the in-plane shear 
modulus involved a similar trend in all plots with increasing the content of each of the four 
nanoplatelet types. 

The predicted in-plane Poisson’s ratio values (𝜈𝜈𝑥𝑥𝑦𝑦) for the laminated composite panels 
are shown in Figure 4.31. The CP-8 indicates a very low lateral contraction in comparison 
to that observed for both AP-6 and AP-8. In addition, the normalized plots show an increase 
in the lateral contraction for the CP-8 with increasing the GNP and 4GNP nanoplatelets 
content. In contrast, for hybrid composite panels reinforced with GO and FGO 
nanoplatelets and all AP-6 and AP-8 panels indicate a decrease in the lateral contraction 
with increasing the nanoplatelets content.  
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Figure 4.27: The predicted extensional stiffness (A11) and its normalized value for 

laminated hybrid composites with 100 aspect ratio and various nanoplatelets content; (a) 
A11 of CF/GNP/epoxy laminated hybrid composite and its normalized value (a`); (b) A11 
of CF/4GNP/epoxy laminated hybrid composite and its normalized value (b`); (c) A11 of 

CF/GO/epoxy laminated hybrid composite and its normalized value (c`); (d) A11 of 
CF/FGO/epoxy laminated hybrid composite and its normalized value (d`). The volume 

fraction of CF is 56%. 

(a) (a`)

(b) (b`)

(c) (c`)

(d) (d`)
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Figure 4.28: The predicted bending stiffness (D11) and its normalized value for laminated 

hybrid composites with 100 aspect ratio and various nanoplatelets content; (a) D11 of 
CF/GNP/epoxy laminated hybrid composite and its normalized value (a`); (b) D11 of 
CF/4GNP/epoxy laminated hybrid composite and its normalized value (b`); (c) D11 of 

CF/GO/epoxy laminated hybrid composite and its normalized value (c`); (d) D11 of 
CF/FGO/epoxy laminated hybrid composite and its normalized value (d`). The volume 

fraction of CF is 56%. 

(a) (a`)

(b) (b`)

(c) (c`)

(d) (d`)
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Figure 4.29: The predicted elastic modulus (𝐸𝐸𝑥𝑥𝑥𝑥= 𝐸𝐸𝑦𝑦𝑦𝑦) and its normalized value for 

laminated hybrid composites with 100 aspect ratio and various nanoplatelets content; (a) 
𝐸𝐸𝑥𝑥𝑥𝑥 of CF/GNP/epoxy laminated hybrid composite and its normalized value (a`); (b) 𝐸𝐸𝑥𝑥𝑥𝑥 
of CF/4GNP/epoxy laminated hybrid composite and its normalized value (b`); (c) 𝐸𝐸𝑥𝑥𝑥𝑥 of 

CF/GO/epoxy laminated hybrid composite and its normalized value (c`); (d) 𝐸𝐸𝑥𝑥𝑥𝑥 of 
CF/FGO/epoxy laminated hybrid composite and its normalized values (d`). The volume 

fraction of CF is 56%. 
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Figure 4.30: The predicted shear modulus (𝐺𝐺𝑥𝑥𝑦𝑦) and its normalized value for laminated 
hybrid composites with 100 aspect ratio and various nanoplatelets content; (a) 𝐺𝐺𝑥𝑥𝑦𝑦 of 
CF/GNP/epoxy laminated hybrid composite and its normalized value (a`); (b) 𝐺𝐺𝑥𝑥𝑦𝑦 of 
CF/4GNP/epoxy laminated hybrid composite and its normalized value (b`); (c) 𝐺𝐺𝑥𝑥𝑦𝑦 of 

CF/GO/epoxy laminated hybrid composite and its normalized value (c`); (d) 𝐺𝐺𝑥𝑥𝑦𝑦 of 
CF/FGO/epoxy laminated hybrid composite and its normalized values (d`). The volume 

fraction of CF is 56%. 
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Figure 4.31: The predicted Poisson’s ratio (𝜈𝜈𝑥𝑥𝑦𝑦) and its normalized value for laminated 
hybrid composites with 100 aspect ratio and various nanoplatelets content; (a) 𝜈𝜈𝑥𝑥𝑦𝑦 of 
CF/GNP/epoxy laminated hybrid composite and its normalized value (a`); (b) 𝜈𝜈𝑥𝑥𝑦𝑦 of 
CF/4GNP/epoxy laminated hybrid composite and its normalized value (b`); (c) 𝜈𝜈𝑥𝑥𝑦𝑦 of 

CF/GO/epoxy laminated hybrid composite and its normalized value (c`); (d) 𝜈𝜈𝑥𝑥𝑦𝑦 of 
CF/FGO/epoxy laminated hybrid composite and its normalized value (d`). The volume 

fraction of CF is 56%. 
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To better understand the reinforcing effect of each of the four nanoplatelet types on the 
mechanical response of the laminated hybrid composite panels, Figures 4.32-4.46 compare 
the response of each of the predicted mechanical properties based on the nanoplatelet type, 
content, and its aspect ratio. The comparison analysis was performed for the three proposed 
structures of the laminated hybrid composite panels at CF volume fraction of 56%. It has 
been previously established that the reinforcing effect of the nanoplatelets is limited/minor 
along the longitudinal direction of the CF, yet it is more valuable for the transverse 
direction of each individual lamina. Thus, the stacking order (angle of orientation of each 
unidirectional lamina in the laminated composite panel) can increase the advantage of the 
reinforcing feature from both CF and nanoplatelets. This allows for redistributing the 
overall reinforcing effect of the CF and the nanoplatelets within the laminated hybrid 
composite panel. The number of laminas and their angle of rotation now represent 
additional factors that control the mechanical response of the laminated hybrid composite 
panel. For the nanoplatelets reinforcing effect, the discrepancy in the mechanical response 
is dependent on the nanoplatelet type, content, and aspect ratio. It can be generalized that 
the reinforcing effect of the nanoplatelets follows the order GNP > 4GNP > FGO ≥ GO. 

Particularly, Figure 4.32.a shows the predicted extensional stiffness (A11) values of CP-
8 laminated hybrid composite panel along with their normalized values shown in Figure 
4.32.a`. The comparison between A11 values is based on the nanoplatelet type whether 
being GNP, 4GNP, FGO, or GO with various nanoplatelets content and constant aspect 
ratio of 100. Accordingly, the hybrid composite panel reinforced with GNP exhibits the 
highest improvement in A11 with increasing the nanoplatelets content. Yet, hybrid 
composite panels reinforced with 4GNP, FGO, and GO exhibit lower improvement in the 
predicted A11 values which shows nearly identical mechanical response at nanoplatelets 
content less than 1.0 wt% and slightly diverge at higher nanoplatelets content. Meanwhile, 
a rather different scenario can be observed in the predicted mechanical response as the 
nanoplatelet aspect ratio is increased. Figure 4.32.b shows the predicted A11 values for the 
same laminated hybrid composite panel along with their normalized values shown in 
Figure 4.32.b`, which are predicted for various nanoplatelet aspect ratio values and constant 
nanoplatelets content of 1.0 wt%. Based on the predicted A11 values, the mechanical 
response for CP-8 panels reinforced with GNP, 4GNP, FGO, and GO is mostly insensitive 
to the increase in the nanoplatelet aspect ratio up to 100. A virtually identical reinforcing 
effect can be observed for the nanoplatelets with aspect ratio values less than 100. CP-8 
panels reinforced with FGO or GO remain insensitive (very slight improvement in the 
predicted A11) to the increase in the nanoplatelet aspect ratio up to 105. For CP-8 panels 
reinforced with GNP or 4GNP, however, rapid improvement in the predicted A11 as the 
nanoplatelet aspect ratio was increased up to 104, with CP-8 panels reinforced with GNP 
being slightly in the lead. However, the reinforcing effect of 4GNP slightly surpasses that 
of GNP at nanoplatelet aspect ratio values greater than 104 (Figure 4.32.b`). Similar trends 
can be observed for the predicted A11 values of AP-8 and AP-6 laminated hybrid composite 
panels shown in Figure 4.33 and Figure 4.34, respectively.  
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Figure 4.32: Comparison of the predicted extensional stiffness (A11) for [0/90/0/90]s ≡ 
CP-8 laminated composite panels based on the nanoplatelet type, content, and aspect 
ratio; (a) predicted A11 for various nanoplatelets content at 100 aspect ratio, and the 

normalized response is shown in (a`); (b) predicted A11 for various aspect ratio values at 
1.0 wt% of the nanoplatelets content, and the normalized response is shown in (b`). The 

volume fraction of CF is 56%. 
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Figure 4.33: Comparison of the predicted extensional stiffness (A11) for [45/0/-45/90]s ≡ 

AP-8 laminated composite panels based on the nanoplatelet type, content, and aspect 
ratio; (a) predicted A11 for various nanoplatelets content at 100 aspect ratio, and the 

normalized response is shown in (a`); (b) predicted A11 for various aspect ratio values at 
1.0 wt% of the nanoplatelets content, and the normalized response is shown in (b`). The 

volume fraction of CF is 56%. 
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Figure 4.34: Comparison of the predicted extensional stiffness (A11) for [60/-60/0]s ≡ 
AP-6 laminated composite panels based on the nanoplatelet type, content, and aspect 
ratio; (a) predicted A11 for various nanoplatelets content at 100 aspect ratio, and the 

normalized response is shown in (a`); (b) predicted A11 for various aspect ratio values at 
1.0 wt% of the nanoplatelets content, and the normalized response is shown in (b`). The 

volume fraction of CF is 56%. 
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In a similar manner, Figure 4.35.a shows the predicted bending stiffness (D11) values 
of CP-8 laminated hybrid composite panel along with their normalized values shown in 
Figure 4.35.a`. The comparison between D11 values is based on the nanoplatelet type 
whether being GNP, 4GNP, FGO, or GO with various nanoplatelets content and constant 
aspect ratio of 100. However, Figure 4.35.b shows the D11 values for the same laminated 
hybrid composite panel along with their normalized values shown in Figure 4.35.b`, which 
are predicted for various nanoplatelet aspect ratio values and constant nanoplatelets content 
of 1.0 wt%. Considering the improvement trend observed in the predicted A11, the CP-8 
hybrid composite panel reinforced with GNP exhibits the highest improvement in D11 with 
increasing the nanoplatelets content. Yet, hybrid composite panels reinforced with 4GNP, 
FGO, and GO exhibit lower improvement in the predicted D11 values which shows nearly 
identical mechanical response at nanoplatelets content less than 1.0 wt% and slightly 
diverge at higher nanoplatelets content (Figure 4.35.a`). Meanwhile, a rather different 
scenario can be observed in the predicted mechanical response as the nanoplatelet aspect 
ratio is increased. Based on the predicted D11 values (Figure 4.35.b`), the mechanical 
response for CP-8 panels reinforced with GNP, 4GNP, FGO, and GO is mostly insensitive 
to the increase in the nanoplatelet aspect ratio up to 100. A virtually identical reinforcing 
effect can be observed for the nanoplatelets with aspect ratio values less than 100. CP-8 
panels reinforced with FGO or GO remain insensitive (very slight improvement in the 
predicted D11) to the increase in the nanoplatelet aspect ratio up to 105. For CP-8 panels 
reinforced with GNP or 4GNP, however, rapid improvement in the predicted D11 as the 
nanoplatelet aspect ratio was increased up to 104, with CP-8 panels reinforced with GNP 
being slightly in the lead. However, the reinforcing effect of 4GNP slightly surpasses that 
of GNP at nanoplatelet aspect ratio values greater than 104 (Figure 4.35.b`). Similar trends 
can be observed for the predicted D11 values of AP-8 and AP-6 laminated hybrid composite 
panels shown in Figure 4.36 and Figure 4.37, respectively.  
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Figure 4.35: Comparison of the predicted bending stiffness (D11) for [0/90/0/90]s ≡ CP-8 
laminated composite panels based on the nanoplatelet type, content, and aspect ratio; (a) 
predicted D11 for various nanoplatelets content at 100 aspect ratio, and the normalized 

response is shown in (a`); (b) predicted D11 for various aspect ratio values at 1.0 wt% of 
the nanoplatelets content, and the normalized response is shown in (b`). The volume 

fraction of CF is 56%. 
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Figure 4.36: Comparison of the predicted bending stiffness (D11) for [45/0/-45/90]s ≡ AP-

8 laminated composite panels based on the nanoplatelet type, content, and aspect ratio; 
(a) predicted D11 for various nanoplatelets content at 100 aspect ratio, and the normalized 
response is shown in (a`); (b) predicted D11 for various aspect ratio values at 1.0 wt% of 

the nanoplatelets content, and the normalized response is shown in (b`). The volume 
fraction of CF is 56%. 
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Figure 4.37: Comparison of the predicted bending stiffness (D11) for [60/-60/0]s ≡ AP-6 
laminated composite panels based on the nanoplatelet type, content, and aspect ratio; (a) 
predicted D11 for various nanoplatelets content at 100 aspect ratio, and the normalized 

response is shown in (a`); (b) predicted D11 for various aspect ratio values at 1.0 wt% of 
the nanoplatelets content, and the normalized response is shown in (b`). The volume 

fraction of CF is 56%. 
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Figure 4.38.a shows the predicted elastic modulus (𝐸𝐸𝑥𝑥𝑥𝑥= 𝐸𝐸𝑦𝑦𝑦𝑦) values of CP-8 laminated 
hybrid composite panel along with their normalized values shown in Figure 4.38.a`. The 
comparison between 𝐸𝐸𝑥𝑥𝑥𝑥 values is based on the nanoplatelet type whether being GNP, 
4GNP, FGO, or GO with various nanoplatelets content and constant aspect ratio of 100. 
However, Figure 4.38.b shows the 𝐸𝐸𝑥𝑥𝑥𝑥 values for the same laminated hybrid composite 
panel along with their normalized values shown in Figure 4.38.b`, which are predicted for 
various nanoplatelet aspect ratio values and constant nanoplatelets content of 1.0 wt%. 
Once more, the CP-8 hybrid composite panel reinforced with GNP exhibits the highest 
improvement in 𝐸𝐸𝑥𝑥𝑥𝑥 with increasing the nanoplatelets content. Yet, hybrid composite 
panels reinforced with 4GNP, FGO, and GO exhibit lower improvement in the predicted 
𝐸𝐸𝑥𝑥𝑥𝑥 values which shows nearly identical mechanical response at nanoplatelets content less 
than 1.0 wt% and slightly diverge at higher nanoplatelets content (Figure 4.38.a`). 
Meanwhile, a rather different scenario can be observed in the predicted mechanical 
response as the nanoplatelet aspect ratio is increased. Based on the predicted 𝐸𝐸𝑥𝑥𝑥𝑥 values 
(Figure 4.38.b`), the mechanical response for CP-8 panels reinforced with GNP, 4GNP, 
FGO, and GO is mostly insensitive to the increase in the nanoplatelet aspect ratio up to 
100. A virtually identical reinforcing effect can be observed for the nanoplatelets with 
aspect ratio values less than 100. CP-8 panels reinforced with FGO or GO remain 
insensitive (very slight improvement in the predicted 𝐸𝐸𝑥𝑥𝑥𝑥) to the increase in the nanoplatelet 
aspect ratio up to 105. For CP-8 panels reinforced with GNP or 4GNP, however, rapid 
improvement in the predicted 𝐸𝐸𝑥𝑥𝑥𝑥  as the nanoplatelet aspect ratio was increased up to 104, 
with CP-8 panels reinforced with GNP being slightly in the lead. However, the reinforcing 
effect of 4GNP slightly surpasses that of GNP at nanoplatelet aspect ratio values greater 
than 104 (Figure 4.38.b`). Similar trends can be observed for the predicted 𝐸𝐸𝑥𝑥𝑥𝑥 values of 
AP-8 and AP-6 laminated hybrid composite panels shown in Figure 4.39 and Figure 4.40, 
respectively. 
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Figure 4.38: Comparison of the predicted in-plane elastic modulus (𝐸𝐸𝑥𝑥𝑥𝑥= 𝐸𝐸𝑦𝑦𝑦𝑦) for 

[0/90/0/90]s ≡ CP-8 laminated composite panels based on the nanoplatelet type, content, 
and aspect ratio; (a) predicted 𝐸𝐸𝑥𝑥𝑥𝑥 for various nanoplatelets content at 100 aspect ratio, 
and the normalized response is shown in (a`); (b) predicted 𝐸𝐸𝑥𝑥𝑥𝑥 for various aspect ratio 
values at 1.0 wt% of the nanoplatelets content, and the normalized response is shown in 

(b`). The volume fraction of CF is 56%. 
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Figure 4.39: Comparison of the predicted in-plane elastic modulus (𝐸𝐸𝑥𝑥𝑥𝑥= 𝐸𝐸𝑦𝑦𝑦𝑦) for [45/0/-
45/90]s ≡ AP-8 laminated composite panels based on the nanoplatelet type, content, and 
aspect ratio; (a) predicted 𝐸𝐸𝑥𝑥𝑥𝑥 for various nanoplatelets content at 100 aspect ratio, and 

the normalized response is shown in (a`); (b) predicted 𝐸𝐸𝑥𝑥𝑥𝑥 for various aspect ratio values 
at 1.0 wt% of the nanoplatelets content, and the normalized response is shown in (b`). 

The volume fraction of CF is 56%. 
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Figure 4.40: Comparison of the predicted in-plane elastic modulus (𝐸𝐸𝑥𝑥𝑥𝑥= 𝐸𝐸𝑦𝑦𝑦𝑦) for [60/-
60/0]s ≡ AP-6 laminated composite panels based on the nanoplatelet type, content, and 
aspect ratio; (a) predicted 𝐸𝐸𝑥𝑥𝑥𝑥 for various nanoplatelets content at 100 aspect ratio, and 

the normalized response is shown in (a`); (b) predicted 𝐸𝐸𝑥𝑥𝑥𝑥 for various aspect ratio values 
at 1.0 wt% of the nanoplatelets content, and the normalized response is shown in (b`). 

The volume fraction of CF is 56%. 
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Figure 4.41.a shows the predicted shear modulus (𝐺𝐺𝑥𝑥𝑦𝑦) values of CP-8 laminated hybrid 
composite panel along with their normalized values shown in Figure 4.41.a`. The 
comparison between 𝐺𝐺𝑥𝑥𝑦𝑦 values is based on the nanoplatelet type whether being GNP, 
4GNP, FGO, or GO with various nanoplatelets content and constant aspect ratio of 100. 
However, Figure 4.41.b shows the 𝐺𝐺𝑥𝑥𝑦𝑦 values for the same laminated hybrid composite 
panel along with their normalized values shown in Figure 4.41.b`, which are predicted for 
various nanoplatelet aspect ratio values and constant nanoplatelets content of 1.0 wt%. The 
CP-8 hybrid composite panel reinforced with GNP exhibits the highest improvement in 
𝐺𝐺𝑥𝑥𝑦𝑦 with increasing the nanoplatelets content. Yet, hybrid composite panels reinforced with 
4GNP, FGO, and GO exhibit lower improvement in the predicted 𝐺𝐺𝑥𝑥𝑦𝑦 values which shows 
nearly identical to close mechanical response with increasing the nanoplatelets content 
(Figure 4.41.a`). Meanwhile, a rather different scenario can be observed in the predicted 
mechanical response as the nanoplatelet aspect ratio is increased. Based on the predicted 
𝐺𝐺𝑥𝑥𝑦𝑦 values (Figure 4.41.b`), the mechanical response for CP-8 panels reinforced with GNP, 
4GNP, FGO, and GO is mostly insensitive to the increase in the nanoplatelet aspect ratio 
up to 100. A virtually identical reinforcing effect can be observed for the nanoplatelets with 
aspect ratio values less than 100. CP-8 panels reinforced with FGO or GO remain 
insensitive (very slight improvement in the predicted 𝐺𝐺𝑥𝑥𝑦𝑦) to the increase in the 
nanoplatelet aspect ratio up to 105. For CP-8 panels reinforced with GNP or 4GNP, 
however, rapid improvement in the predicted 𝐺𝐺𝑥𝑥𝑦𝑦 as the nanoplatelet aspect ratio was 
increased up to 104, with CP-8 panels reinforced with GNP being slightly in the lead. 
However, the reinforcing effect of 4GNP slightly surpasses that of GNP at nanoplatelet 
aspect ratio values greater than 104 (Figure 4.41.b`). Similar trend can be observed for the 
predicted 𝐺𝐺𝑥𝑥𝑦𝑦 values of AP-8 and AP-6 laminated hybrid composite panels shown in Figure 
4.42 and Figure 4.43, respectively. 
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Figure 4.41: Comparison of the predicted in-plane shear modulus (𝐺𝐺𝑥𝑥𝑦𝑦) for [0/90/0/90]s ≡ 

CP-8 laminated composite panels based on the nanoplatelet type, content, and aspect 
ratio; (a) predicted 𝐺𝐺𝑥𝑥𝑦𝑦 for various nanoplatelets content at 100 aspect ratio, and the 

normalized response is shown in (a`); (b) predicted 𝐺𝐺𝑥𝑥𝑦𝑦 for various aspect ratio values at 
1.0 wt% of the nanoplatelets content, and the normalized response is shown in (b`). The 

volume fraction of CF is 56%. 
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Figure 4.42: Comparison of the predicted in-plane shear modulus (𝐺𝐺𝑥𝑥𝑦𝑦) for [45/0/-45/90]s 

≡ AP-8 laminated composite panels based on the nanoplatelet type, content, and aspect 
ratio; (a) predicted 𝐺𝐺𝑥𝑥𝑦𝑦 for various nanoplatelets content at 100 aspect ratio, and the 

normalized response is shown in (a`); (b) predicted 𝐺𝐺𝑥𝑥𝑦𝑦 for various aspect ratio values at 
1.0 wt% of the nanoplatelets content, and the normalized response is shown in (b`). The 

volume fraction of CF is 56%. 
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Figure 4.43: Comparison of the predicted in-plane shear modulus (𝐺𝐺𝑥𝑥𝑦𝑦) for [60/-60/0]s ≡ 

AP-6 laminated composite panels based on the nanoplatelet type, content, and aspect 
ratio; (a) predicted 𝐺𝐺𝑥𝑥𝑦𝑦 for various nanoplatelets content at 100 aspect ratio, and the 

normalized response is shown in (a`); (b) predicted 𝐺𝐺𝑥𝑥𝑦𝑦 for various aspect ratio values at 
1.0 wt% of the nanoplatelets content, and the normalized response is shown in (b`). The 

volume fraction of CF is 56%. 
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Figure 4.44.a shows the predicted Poisson’s ratio (𝜈𝜈𝑥𝑥𝑦𝑦) values of CP-8 laminated hybrid 
composite panel along with their normalized values shown in Figure 4.44.a`. The 
comparison between 𝜈𝜈𝑥𝑥𝑦𝑦 values is based on the nanoplatelet type whether being GNP, 
4GNP, FGO, or GO with various nanoplatelets content and constant aspect ratio of 100. 
Increasing the GNP and 4GNP content produces an increase in the predicted 𝜈𝜈𝑥𝑥𝑦𝑦 with CP-
8 panel reinforced with GNP being in the lead. However, a slight drop in the predicted 𝜈𝜈𝑥𝑥𝑦𝑦 

values can be observed as the FGO and GO nanoplatelets content increased. Note that CP-
8 panels reinforced with FGO and GO exhibit nearly identical lateral contractions. To some 
extent, a similar trend can be observed in the predicted 𝜈𝜈𝑥𝑥𝑦𝑦 with increasing the nanoplatelet 
aspect ratio. Figure 4.44.b shows the 𝜈𝜈𝑥𝑥𝑦𝑦 values for the same laminated hybrid composite 
panel along with their normalized values shown in Figure 4.44.b`, which are predicted for 
various nanoplatelet aspect ratio values and constant nanoplatelets content of 1.0 wt%. The 
Poisson contraction in all CP-8 hybrid composite panels is insensitive to the increase in the 
nanoplatelet aspect ratio up to 100. For CP-8 panels reinforced with FGO or GO, the 
predicted 𝜈𝜈𝑥𝑥𝑦𝑦 values remain insensitive to the increase in the nanoplatelet aspect ratio up 
to 105. For CP-8 panels reinforced with GNP or 4GNP, however, rapid increase in the 
predicted 𝜈𝜈𝑥𝑥𝑦𝑦 as the nanoplatelet aspect ratio was increased up to 104, with CP-8 panels 
reinforced with GNP being slightly in the lead. However, the lateral contraction in CP-8 
panel reinforced with 4GNP becomes slightly higher than that of GNP reinforced panel at 
nanoplatelet aspect ratio values greater than 104. 

The Poisson lateral contraction response of AP-8 and AP-6 are shown in Figure 4.45 
and Figure 4.46, respectively. Generally, all hybrid composite panels exhibit a decrease in 
the predicted 𝜈𝜈𝑥𝑥𝑦𝑦 as the nanoplatelet content and its aspect ratio were increased. For 
nanoplatelets with 100 constant aspect ratio (Figures 4.45.a,a` and Figures 4.46.a,a`), AP-
8 and AP-6 panels reinforced with GNP show the largest decrease in the predicted 𝜈𝜈𝑥𝑥𝑦𝑦 as 
the nanoplatelets content increased. However, AP-8 and AP-6 panels reinforced with 
4GNP, FGO, and GO exhibit nearly identical and moderate decrease in the predicted 𝜈𝜈𝑥𝑥𝑦𝑦 
as the nanoplatelets content increased. For 1.0 wt% of nanoplatelets content (Figures 
4.45.b,b` and Figures 4.46.b.b`), the Poisson contraction in all hybrid composite panels is 
insensitive to the increase in the nanoplatelet aspect ratio up to 100. At larger nanoplatelet 
aspect ratio, the Poisson contraction in AP-8 and AP-6 panels reinforced with FGO and 
GO remains rather insensitive to the increase in the nanoplatelet aspect ratio up to 105. In 
contrast, the Poisson contraction in AP-8 and AP-6 panels reinforced with GNP and 4GNP 
is more sensitive to the increase in the nanoplatelet aspect ratio where a rapid decrease in 
the predicted 𝜈𝜈𝑥𝑥𝑦𝑦 values can be observed. More specifically, the predicted 𝜈𝜈𝑥𝑥𝑦𝑦 values for 
composite panels reinforced with GNP exhibit a larger decrease trend with increasing the 
aspect ratio up to 104. At aspect ratio values greater than 104, however, composite panels 
reinforced with 4GNP become slightly more sensitive to the increase in the aspect ratio as 
larger decrease in the predicted 𝜈𝜈𝑥𝑥𝑦𝑦 can be observed. 
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Figure 4.44: Comparison of the predicted in-plane Poisson’s ratio (𝜈𝜈𝑥𝑥𝑦𝑦) for [0/90/0/90]s ≡ 

CP-8 laminated composite panels based on the nanoplatelet type, content, and aspect 
ratio; (a) predicted 𝜈𝜈𝑥𝑥𝑦𝑦 for various nanoplatelets content at 100 aspect ratio, and the 

normalized response is shown in (a`); (b) predicted 𝜈𝜈𝑥𝑥𝑦𝑦 for various aspect ratio values at 
1.0 wt% of the nanoplatelets content, and the normalized response is shown in (b`). The 

volume fraction of CF is 56%. 
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Figure 4.45: Comparison of the predicted in-plane Poisson’s ratio (𝜈𝜈𝑥𝑥𝑦𝑦) for [45/0/-45/90]s 

≡ AP-8 laminated composite panels based on the nanoplatelet type, content, and aspect 
ratio; (a) predicted 𝜈𝜈𝑥𝑥𝑦𝑦 for various nanoplatelets content at 100 aspect ratio, and the 

normalized response is shown in (a`); (b) predicted 𝜈𝜈𝑥𝑥𝑦𝑦 for various aspect ratio values at 
1.0 wt% of the nanoplatelets content, and the normalized response is shown in (b`). The 

volume fraction of CF is 56%. 
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Figure 4.46: Comparison of the predicted in-plane Poisson’s ratio (𝜈𝜈𝑥𝑥𝑦𝑦) for [60/-60/0]s ≡ 

AP-6 laminated composite panels based on the nanoplatelet type, content, and aspect 
ratio; (a) predicted 𝜈𝜈𝑥𝑥𝑦𝑦 for various nanoplatelets content at 100 aspect ratio, and the 

normalized response is shown in (a`); (b) predicted 𝜈𝜈𝑥𝑥𝑦𝑦 for various aspect ratio values at 
1.0 wt% of the nanoplatelets content, and the normalized response is shown in (b`). The 

volume fraction of CF is 56%. 
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4.4 Summary and Conclusions  

Considering the reinforcing effect of the four nanoplatelet types (GNP, 4GNP, GO, 
FGO) modeled and analyzed in this work, the mechanical response of 
CF/nanoplatelet/epoxy laminated hybrid composites was extensively investigated using 
micromechanics analysis. The nanoplatelet/epoxy mechanical properties were imposed as 
the matrix, which was reinforced with CF. The unidirectional CF/nanoplatelet/epoxy 
hybrid composites were first modeled to address the reinforcing effect of CF and the 
proposed nanoplatelets on the composite mechanical response. The predicted mechanical 
properties indicate that the axial mechanical response is dominated by the CF, which is 
directly dependent on the CF content. However, there is an improvement in the transverse 
mechanical response owing to the nanoplatelets reinforcing effect. The improvement 
degree varies according to the nanoplatelet dispersion level, functionality, content, and its 
aspect ratio. It can be generalized that the reinforcing effect of the nanoplatelets follows 
the order GNP > 4GNP > FGO ≥ GO. 

For the laminated composite panel models, the observed improvement in the 
mechanical properties of unidirectional CF/nanoplatelet/epoxy hybrid composite plates 
was utilized in building larger laminated hybrid composite structures. Generally, the 
reinforcing effect of the nanoplatelets was found to improve the overall mechanical 
properties of the laminated hybrid composite. Even though the improvement is limited 
along the CF direction in each lamina, it is crucial in the transverse direction of the lamina. 
The different orientation, or stacking order, of the laminates in the composite panel helped 
to redistribute the reinforcing effect of the nanoplatelets. Accordingly, improved 
transversely isotropic mechanical properties were obtained for the proposed laminated 
hybrid composite structures. In effect, the nanoplatelets inclusion can also improve the out-
of-plane elastic and shear moduli of the laminated composite panel. They can also improve 
the interlaminar, intralaminar, and translaminar toughening mechanisms in the laminated 
structure. 

The comparison studies performed in this work can provide the options for designing 
or fabricating laminated composite panels based on the engineering application and the 
mechanical function of the structural component. These studies can be utilized to optimize 
the mechanical behavior of the laminated hybrid composite by controlling the variables 
(key processing parameters) that affect the mechanical response. These controlling 
variables can be adjusted according to the component function within the structure. 
Specifically, the CF angle/direction in each lamina and the number of laminas and their 
stacking order are fundamental to determine the mechanical response of the constructed 
laminated composite panel. 

 



www.manaraa.com

121 

Chapter 5 
 

RECOMMENDATIONS FOR FUTURE WORK 

Micromechanics analysis using MAC/GMC 4.0 based on the nanoscale predictions of 
MD modeling with ReaxFF using LAMMPS has shown the potential to model, predict, 
and optimize the mechanical response of advanced polymer-based hybrid composite 
materials. These computational tools can also be used to resolve, address, and analyze 
many other structural issues of such composite materials. The current work can be extended 
to undertake the following topics which are recommended for future work.   

5.1 The Reinforcing Effect of Reduced Graphene Oxide (rGO) 

The poor mechanical performance of the highly concentrated GO nanoplatelets resulted 
in a weak reinforcing effect when integrated into the epoxy matrix. Hence, this work can 
be extended to study the reinforcing effect of reduced graphene oxide nanoplatelets (rGO) 
on the mechanical response of the hosting matrix. Such a study can help to specify the 
required amount of oxygen additives that satisfies the optimum rGO stiffness/strength and 
interfacial interaction/adhesion between rGO and the hosting matrix. Note that using 
different concentrations of oxygen can produce variable wrinkling/waviness degree in the 
rGO structure. This would provide information about the wrinkling effect of rGO on the 
predicted mechanical response. 

5.2 Interfacial Failure 

 The nanocomposite MD models simulated in this work can be used to study the 
interfacial failure between the nanoplatelets and hosting matrix. Typically, GNP surface 
functionalization can lead to a fundamental change in the GNP lattice structure such as its 
morphology and stiffness. The presence of functional groups on the GNP surface was also 
found to greatly affect the molecular structure at the interphase region in addition to the 
improved interfacial interaction. These observations bring to the mind the question of how 
GNP surface functionalization would affect the interfacial shear strength, tribology, and 
delamination failure. Performing such a study would provide additional essential 
information regarding the nanocomposite structural integrity. The study outcome can be 
optimized using different types and amounts of GNP surface functionalization. In addition, 
speculating the effect of using a different hosting matrix is another factor that can be 
considered for such a study.   

5.3 Thermo-Mechanical Properties 

All the MD and micromechanics modeling and predictions in this work were performed 
at room temperature. However, this is not the case in real life. Polymer-based composite 
structures are expected to serve in different environmental conditions. For example, most 
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aircraft structures are designed considering an operating temperature range between +40 
and -50 ⁰C [6]. Because of their low glass transition temperature (𝑇𝑇𝑔𝑔), polymer-based 
composite materials can only be used for structural and engine components that are 
exposed to low-temperature. Accordingly, it is of great importance to determine the 
thermo-mechanical response of the proposed composite materials considering the expected 
range of service temperature. Both LAMMPS and MAC/GMC 4.0 has the capability to 
analyze and predict the mechanical response of the composites considering temperature 
effect at nanoscale and microscale, respectively. Consequently, the effective coefficients 
of thermal expansion (CTE) and the effective thermal conductivity (κ) of the composite 
can also be investigated at both modeling levels. 

5.4 Fatigue Damage and failure Analysis 

In the aerospace industry, fatigue life and fatigue strength of composites can be 
determined using S-N curves. Fast fatigue damage or failure in composites is governed by 
fiber breakage which is mostly predominant at high-stress regimes. Under these 
circumstances, composite materials would experience an early structural failure. That is, 
short fatigue life is expected for the composite structure at high-stress fatigue loading. For 
intermediate stress levels, however, the fatigue process in composite structures would 
include different types of fatigue damage. Fatigue damages such as matrix cracking, fiber-
matrix debonding, and delamination cracking are most likely to occur at intermediate 
fatigue loading. A slow process of fiber breakage can also occur under intermediate fatigue 
loading. That is, prolonged fatigue life is expected for the composite structures at 
intermediate stress levels. For very low fatigue stress loading, low possibility of fatigue 
damage with very long fatigue life (could be infinite) is expected for composite structures. 
Under these circumstances, the fatigue limit of the polymer matrix is used to determine the 
fatigue endurance limit of the composite [6]. Fortunately, MAC/GMC 4.0 provides the 
capability for efficiently analyzing fiber-matrix debonding, fiber breakage, and fatigue 
damage/failure. These failure or damage concepts are essential for assessing the 
mechanical performance and fatigue life of composite structures under loading.     
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Appendix A: High-Performance Computing 

A.1 HPC Resources and Specifications 

All MD simulations in this work were performed using SUPERIOR. SUPERIOR is a 
high-performance computing infrastructure that is available to all researchers at Michigan 
Technological University. The specifications of the computing infrastructure and storage 
components of SUPERIOR are listed below: 

 
Generation Specification 

Generation 1.0, 
acquired between 

June-2013 and 
October-2015 

a 

Number of compute nodes 92 
Number of CPU cores/node 16 
CPU Intel Xeon E5-2670 
CPU speed 2.60 GHz 
RAM per node 64 GB 
TFLOPS 30 

b 

Number of compute nodes 4 
Number of CPU cores/node 24 
CPU Intel Xeon E4-2680 
CPU speed 2.50 GHz 
RAM per node 256 GB 
TFLOPS 2 

c 

Number of compute nodes 5 GPU 
Number of CPU cores/node 16 
CPU Intel Xeon E5-2670 
CPU speed 2.60 GHz 
RAM per node 64 GB  
NVIDIA Tesla M2090 GPUs 4 
TFLOPS 13 

 3 Storage nodes 96 TB 

Generation 2.0, 
acquired between 

June-2017 and 
August-2018 

- 

Number of compute nodes 85 
Number of CPU cores/node 32 
CPU Intel Xeon E5-2683 
CPU speed 2.10 GHz 
RAM per node 256 GB 
TFLOPS 91 

 
For more information about HPC infrastructure at Michigan Tech, please visit 

https://hpc.mtu.edu/. 
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A.2 Computational Cost of MD Simulations 

The total number of the MD simulations performed in this work using SUPERIOR with 
the corresponding total computational time is: 

 
• Number of Completed MD Simulations: 2239 
• Wall Time in (h:mm:ss): 121829:32:46 
• CPU Time in (h:mm:ss): 7982535:24:03 

 
The following tables include a representative computational cost of the MD simulation 

steps for the given nanocomposite MD samples: 
 

A.2.1 For the 4-layer GNP/epoxy MD model with 6048 atoms 

Simulation Description Force Field  Simulation 
Time (ns) 

No. of 
CPUs 

CPU Time 
(hr) 

Combine and densify monomers OPLS 2.5 8 34 
Crosslinking epoxy monomers OPLS 1.0 8 110 
Equilibrate the MD model OPLS 1.0 16 140 
Import into ReaxFF ReaxFF 1.0 32 10488 
Equilibrate the MD model ReaxFF 1.0 32 9171 
Normal strain ReaxFF 0.5 32 6105 
Shear strain  ReaxFF 0.5 32 6092 

 

A.2.2 For the GNP/epoxy MD model with 7028 atoms 

Simulation Description Force Field  Simulation 
Time (ns) 

No. of 
CPUs 

CPU Time 
(hr) 

Combine and densify monomers OPLS 3.2 8 75 
Crosslinking epoxy monomers OPLS 1.0 8 153 
Equilibrate the MD model OPLS 1.0 16 200 
Import into ReaxFF ReaxFF 1.0 32 9937 
Equilibrate the MD model ReaxFF 1.0 32 9528 
Normal strain ReaxFF 0.5 32 5023 
Shear strain  ReaxFF 0.5 32 4950 
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A.2.3 For the GO/epoxy MD model with 7841 atoms 

Simulation Description Force Field  Simulation 
Time (ns) 

No. of 
CPUs 

CPU Time 
(hr) 

Combine and densify monomers OPLS 3.2 8 88 
Crosslinking epoxy monomers OPLS 1.0 8 160 
Equilibrate the MD model OPLS 1.0 16 198 
Import into ReaxFF ReaxFF 1.0 32 10222 
Equilibrate the MD model ReaxFF 1.0 32 9637 
Normal strain ReaxFF 0.5 32 6590 
Shear strain  ReaxFF 0.5 32 5671 

 

A.2.4 For the FGO/epoxy MD model with 7811 atoms 

Simulation Description Force Field  Simulation 
Time (ns) 

No. of 
CPUs 

CPU Time 
(hr) 

Combine and densify monomers OPLS 3.2 8 86 
Crosslinking epoxy monomers OPLS 1.0 8 167 
Equilibrate the MD model OPLS 1.0 16 190 
Import into ReaxFF ReaxFF 1.0 32 11012 
Equilibrate the MD model ReaxFF 1.0 32 10649 
Normal strain ReaxFF 0.5 32 6139 
Shear strain  ReaxFF 0.5 32 5668 
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Appendix B: Modeling Sample Scripts 

The modeling processes in this computational work involved writing many scripts and 
codes toward achieving the ultimate objectives. Please consider visiting the following 
GitHub repository to look at some of the LAMMPS, BASH, Python, and MAC/GMC 4.0 
scripts used in this work: https://github.com/hnalmahm/PhD 

The following table includes a brief description of some of these modeling scripts and 
computational codes: 

 
Script/Code/Package Type Usage  
fixdens_script.lmp LAMMPS To densify the epoxy monomers in 

the GNP/epoxy MD model  
Cross_Linking_Package BASH, 

LAMMPS, 
Python 

LAMMPS and Python scripts were 
written to perform the crosslinking 
process of epoxy monomers. The 
BASH script controls the iterative 
running of LAMMPS and Python 
scripts until reaching the targeted 
crosslinking density 

relax_npt_OPLS_script.lmp LAMMPS To equilibrate the MD model in 
OPLS and relieve the residual stresses 
produced after crosslinking process 

import_into_reaxff_script_lmp LAMMPS To import or transmit the relaxed MD 
model from OPLS into ReaxFF  

relax_npt_ReaxFF_script.lmp LAMMPS To further equilibrate the MD model 
in ReaxFF and relieve the residual 
stresses produced after the transition 
from OPLS to ReaxFF 

normal_strain_script.lmp LAMMPS Applying a normal strain on the MD 
model to acquire its mechanical 
response: 𝐸𝐸𝑥𝑥𝑥𝑥,𝐸𝐸𝑦𝑦𝑦𝑦,𝐸𝐸𝑧𝑧𝑧𝑧, 𝜈𝜈𝑥𝑥𝑦𝑦, 𝜈𝜈𝑧𝑧𝑥𝑥, 𝜈𝜈𝑧𝑧𝑦𝑦 

shear_strain_script.lmp LAMMPS Applying a shear strain on the MD 
model to acquire its mechanical 
response: 𝐺𝐺𝑥𝑥𝑦𝑦,𝐺𝐺xz,𝐺𝐺yz 

ruc_vf_asp_gnp_epo.mac MAC/GMC To generate and predict the 
mechanical properties of GNP/epoxy 
RUC 

uni_dir_CF_hybrid.mac MAC/GMC To generate and predict the 
mechanical properties of 
CF/GNP/epoxy hybrid composite 

laminate_hybrid_composite.mac MAC/GMC To generate and predict the 
mechanical properties of 
CF/GNP/epoxy laminated hybrid 
composites 

https://github.com/hnalmahm/PhD
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There are many other intermediate and post-processing scripts and codes that were 
written to perform all the calculations, plotting, and analyzing the results. In the link 
provided above, there is also a complete timeline of the research work activity and MD 
simulations that were performed in SUPERIOR. The research work timeline was generated 
using Gource (https://gource.io/), a software that can be used to display activity from 
repositories using a video visualization. The screenshots shown below were taken from the 
research work activity timeline to show the progress between February-2016 and October-
2019.  
 

 
 

 
 

https://gource.io/
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Appendix C: Copyright Agreements 

This section includes the copyright clearance documentation for previously published 
work reused in this dissertation as part of the author's rights. 

C.1 Copyright Clearance for Figure 1.1 
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C.2 Copyright Clearance for Ref [51] 

H. Al Mahmud, M. Radue, S. Chinkanjanarot, W. Pisani, S. Gowtham, and G. Odegard, 
"Predicting the Effective Mechanical Properties of Graphene Nanoplatelet-Carbon Fiber-
Epoxy Hybrid Composites Using ReaxFF: A Multiscale Modeling," in ASCE Earth and 
Space conference, Cleveland, Ohio, USA, April 9-12, 2018, pp. 556-569. 
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C.3 Copyright Clearance for Ref [52] 

H. Al Mahmud, M. S. Radue, S. Chinkanjanarot, W. A. Pisani, S. Gowtham, and G. M. 
Odegard, "Multiscale modeling of carbon fiber-graphene nanoplatelet-epoxy hybrid 
composites using a reactive force field," Composites Part B: Engineering, vol. 172, pp. 
628-635, 2019. 
 
Elsevier grants a number of rights to its journal authors as outlined here: 
 
• https://www.elsevier.com/about/our-business/policies/copyright#Author-rights 

 
• https://www.elsevier.com/__data/assets/pdf_file/0007/55654/AuthorUserRights.pdf 
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Epoxy-Based Nanocomposites Reinforced with Functionalized Graphene Nanoplatelets," 
in Proceedings of the American Society for Composites, Thirty-Fourth Technical 
Conference, Atlanta, Georgia, USA, September 23─25, 2019: DEStech Publications, Inc., 
Lancaster, PA, USA, 2019, pp. 89-105. 
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